Nuprl Lemma : p-mul-int-cancelation-1

[p:{2...}]. ∀[k:ℕ]. ∀[a,b:p-adics(p)].  ((p^k(p) p^k(p) b ∈ p-adics(p))  (a b ∈ p-adics(p)))


Proof




Definitions occuring in Statement :  p-int: k(p) p-mul: y p-adics: p-adics(p) exp: i^n int_upper: {i...} nat: uall: [x:A]. B[x] implies:  Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] nat_plus: + nat: int_upper: {i...} le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B less_than': less_than'(a;b) true: True prop: rev_uimplies: rev_uimplies(P;Q) p-int: k(p) p-mul: y int_seg: {i..j-} p-adics: p-adics(p) guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) eqmod: a ≡ mod m divides: a int_nzero: -o nequal: a ≠ b ∈  lelt: i ≤ j < k
Lemmas referenced :  p-adics-equal decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf nat_plus_wf p-mul_wf p-int_wf exp_wf2 p-adics_wf nat_wf int_upper_wf nat_plus_subtype_nat p-reduce_wf eqmod_functionality_wrt_eqmod eqmod_transitivity p-reduce-eqmod multiply_functionality_wrt_eqmod eqmod_weakening nat_plus_properties nat_properties int_upper_properties full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf p-adic-property decidable__le le_wf eqmod_inversion subtype_base_sq set_subtype_base int_subtype_base exp-positive exp_add subtract_wf mul_cancel_in_eq exp_wf3 subtype_rel_sets nequal_wf intformeq_wf int_formula_prop_eq_lemma exp_wf_nat_plus int_seg_properties decidable__equal_int itermMultiply_wf itermSubtract_wf int_term_value_mul_lemma int_term_value_subtract_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt hypothesis extract_by_obid sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality_alt because_Cache setElimination rename productElimination natural_numberEquality hypothesisEquality unionElimination independent_pairFormation voidElimination independent_functionElimination independent_isectElimination isectElimination sqequalRule applyEquality universeIsType equalityIsType1 inhabitedIsType lambdaEquality_alt axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies multiplyEquality equalityTransitivity equalitySymmetry addEquality approximateComputation dependent_pairFormation_alt int_eqEquality intEquality instantiate cumulativity closedConclusion equalityIsType4 baseApply baseClosed setIsType

Latex:
\mforall{}[p:\{2...\}].  \mforall{}[k:\mBbbN{}].  \mforall{}[a,b:p-adics(p)].    ((p\^{}k(p)  *  a  =  p\^{}k(p)  *  b)  {}\mRightarrow{}  (a  =  b))



Date html generated: 2019_10_15-AM-10_35_20
Last ObjectModification: 2018_10_15-PM-08_54_21

Theory : rings_1


Home Index