Nuprl Lemma : first-class-val

[Info,A:Type]. ∀[L:EClass(A) List]. ∀[es:EO+(Info)]. ∀[e:E].
  (↑e ∈b L[index-of-first in L.e ∈b 1]) ∧ (first-class(L)(e) L[index-of-first in L.e ∈b 1](e) ∈ A) 
  supposing ↑e ∈b first-class(L)


Proof




Definitions occuring in Statement :  first-class: first-class(L) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E select: L[n] list: List assert: b uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q subtract: m natural_number: $n universe: Type equal: t ∈ T first_index: index-of-first in L.P[x]
Lemmas :  assert_witness assert_wf in-eclass_wf first-class_wf top_wf subtype_rel_list eclass_wf es-E_wf event-ordering+_subtype es-interface-subtype_rel2 list_wf event-ordering+_wf list_induction reduce_nil_lemma isempty_lemma false_wf reduce_cons_lemma is-first-class2 select_wf decidable__le not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel first_index_bounds length_wf eclass-val_wf all_wf cond-class_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot is-cond-class cond-class-val iff_weakening_equal iff_imp_equal_bool btrue_wf true_wf uiff_transitivity equal-wf-T-base bnot_wf not_wf assert_of_bnot bool_cases first_index_cons lt_int_wf first_index_wf assert_of_lt_int nat_wf less_than_wf subtract_wf le_int_wf assert_of_le_int le_wf select-cons int_subtype_base
\mforall{}[Info,A:Type].  \mforall{}[L:EClass(A)  List].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (\muparrow{}e  \mmember{}\msubb{}  L[index-of-first  X  in  L.e  \mmember{}\msubb{}  X  -  1])
    \mwedge{}  (first-class(L)(e)  =  L[index-of-first  X  in  L.e  \mmember{}\msubb{}  X  -  1](e)) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  first-class(L)



Date html generated: 2015_07_17-PM-00_50_57
Last ObjectModification: 2015_02_04-PM-05_32_17

Home Index