Nuprl Lemma : firstn-before

[the_es:EO]. ∀[e:E]. ∀[n:ℕ].  firstn(n;before(e)) before(before(e)[n]) supposing n < ||before(e)||


Proof




Definitions occuring in Statement :  es-before: before(e) es-E: E event_ordering: EO select: L[n] firstn: firstn(n;as) length: ||as|| nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] sqequal: t
Lemmas :  es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf length_wf es-E_wf es-before_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf es-first_wf2 bool_wf eqtt_to_assert length_of_nil_lemma list_ind_nil_lemma stuck-spread base_wf uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot length-append length_of_cons_lemma es-pred_wf es-pred-locl es-causl_weakening firstn_append subtype_rel_list top_wf cons_wf equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul event_ordering_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff le_int_wf assert_of_lt_int lt_int_wf nil_wf select-append firstn_all int_subtype_base subtype_base_sq
\mforall{}[the$_{es}$:EO].  \mforall{}[e:E].  \mforall{}[n:\mBbbN{}].    firstn(n;before(e))  \msim{}  before(before(e)[n])  su\000Cpposing  n  <  ||before(e)||



Date html generated: 2015_07_17-AM-08_43_27
Last ObjectModification: 2015_02_02-PM-06_42_28

Home Index