Nuprl Lemma : firstn-before
∀[the_es:EO]. ∀[e:E]. ∀[n:ℕ].  firstn(n;before(e)) ~ before(before(e)[n]) supposing n < ||before(e)||
Proof
Definitions occuring in Statement : 
es-before: before(e)
, 
es-E: E
, 
event_ordering: EO
, 
select: L[n]
, 
firstn: firstn(n;as)
, 
length: ||as||
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Lemmas : 
es-causl-swellfnd, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
length_wf, 
es-E_wf, 
es-before_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
es-causl_wf, 
es-first_wf2, 
bool_wf, 
eqtt_to_assert, 
length_of_nil_lemma, 
list_ind_nil_lemma, 
stuck-spread, 
base_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
length-append, 
length_of_cons_lemma, 
es-pred_wf, 
es-pred-locl, 
es-causl_weakening, 
firstn_append, 
subtype_rel_list, 
top_wf, 
cons_wf, 
equal_wf, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
not-le-2, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
event_ordering_wf, 
assert_of_le_int, 
bnot_of_lt_int, 
assert_functionality_wrt_uiff, 
le_int_wf, 
assert_of_lt_int, 
lt_int_wf, 
nil_wf, 
select-append, 
firstn_all, 
int_subtype_base, 
subtype_base_sq
\mforall{}[the$_{es}$:EO].  \mforall{}[e:E].  \mforall{}[n:\mBbbN{}].    firstn(n;before(e))  \msim{}  before(before(e)[n])  su\000Cpposing  n  <  ||before(e)||
Date html generated:
2015_07_17-AM-08_43_27
Last ObjectModification:
2015_02_02-PM-06_42_28
Home
Index