Nuprl Lemma : pRun-invariant1
∀[M:Type ─→ Type]
  ∀n2m:ℕ ─→ pMsg(P.M[P]). ∀l2m:Id ─→ pMsg(P.M[P]). ∀S0:System(P.M[P]). ∀env:pEnvType(P.M[P]).
    let r = pRun(S0;env;n2m;l2m) in
        ∀e:runEvents(r)
          (fst(fst(run-info(r;e))) < run-event-step(e)
          ∨ (∃m:ℕlg-size(snd(S0)). ((fst(run-info(r;e))) = (fst(lg-label(snd(S0);m))) ∈ (ℤ × Id)))) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
run-event-step: run-event-step(e)
, 
runEvents: runEvents(r)
, 
run-info: run-info(r;e)
, 
pRun: pRun(S0;env;nat2msg;loc2msg)
, 
pEnvType: pEnvType(T.M[T])
, 
System: System(P.M[P])
, 
pMsg: pMsg(P.M[P])
, 
lg-label: lg-label(g;x)
, 
lg-size: lg-size(g)
, 
Id: Id
, 
strong-type-continuous: Continuous+(T.F[T])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
let: let, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
pRun-intransit-invariant, 
nat_wf, 
pRun_wf2, 
decidable__assert, 
is-run-event_wf, 
sq_stable__assert, 
runEvents_wf, 
pEnvType_wf, 
System_wf, 
Id_wf, 
pMsg_wf, 
strong-type-continuous_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_lt_int, 
bool_cases, 
less_than_wf, 
not_wf, 
bnot_wf, 
assert_wf, 
lelt_wf, 
lg-label_wf, 
lg-size_wf, 
lt_int_wf, 
pInTransit_wf, 
lg-is-source_wf, 
le-add-cancel, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
decidable__le, 
pRun_wf, 
zero-add, 
nequal-le-implies, 
nat_properties, 
le_wf, 
int_upper_subtype_nat, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
false_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
subtract_wf, 
lg-all_wf, 
eq_id_wf, 
le-add-cancel-alt, 
pCom_wf, 
subtype_top, 
top_wf, 
subtype_rel_product, 
pi1_wf_top, 
labeled-graph_wf, 
true_wf, 
squash_wf, 
atom2_subtype_base, 
int_subtype_base, 
product_subtype_base, 
is-dag_wf, 
pi2_wf, 
ldag_wf, 
component_wf, 
list_wf, 
and_wf, 
or_wf, 
less-iff-le, 
int_seg_wf, 
exists_wf, 
decidable__lt, 
unit_wf2, 
fulpRunType_wf, 
neg_assert_of_eq_atom, 
assert_of_eq_atom, 
com-kind_wf, 
eq_atom_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S0:System(P.M[P]).  \mforall{}env:pEnvType(P.M[P]).
        let  r  =  pRun(S0;env;n2m;l2m)  in
                \mforall{}e:runEvents(r)
                    (fst(fst(run-info(r;e)))  <  run-event-step(e)
                    \mvee{}  (\mexists{}m:\mBbbN{}lg-size(snd(S0)).  ((fst(run-info(r;e)))  =  (fst(lg-label(snd(S0);m)))))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_14_25
Last ObjectModification:
2015_07_16-AM-09_38_53
Home
Index