Nuprl Lemma : weighted-sum-linear

[a,b:ℚ]. ∀[p:ℚ List]. ∀[F,G:ℕ||p|| ─→ ℚ].
  (weighted-sum(p;λx.((a (F x)) (b (G x)))) ((a weighted-sum(p;F)) (b weighted-sum(p;G))) ∈ ℚ)


Proof




Definitions occuring in Statement :  weighted-sum: weighted-sum(p;F) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ─→ B[x] natural_number: $n equal: t ∈ T qmul: s qadd: s rationals:
Lemmas :  rationals_wf int_seg_wf length_wf list_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties list-cases product_subtype_list decidable__lt not-equal-2 le-add-cancel-alt lelt_wf not-le-2 sq_stable__le add-mul-special zero-mul nat_wf iff_weakening_equal Error :mon_ident_q,  Error :qmul_zero_qrng,  true_wf squash_wf qadd_wf int-subtype-rationals ws_nil_lemma list_ind_cons_lemma list_ind_nil_lemma cons_wf nil_wf qmul_wf length_nil non_neg_length length_wf_nil length_wf_nat length_cons length_append subtype_rel_list top_wf append_wf subtype_rel_dep_function subtype_rel_self weighted-sum-split ws_single_lemma length_of_cons_lemma length_of_nil_lemma Error :qadd_ac_1_q,  Error :qadd_comm_q,  Error :mon_assoc_q,  Error :qmul_ac_1_qrng,  Error :qmul_assoc_qrng,  Error :qmul_over_plus_qrng,  weighted-sum_wf equal_wf le-add-cancel2 minus-zero
\mforall{}[a,b:\mBbbQ{}].  \mforall{}[p:\mBbbQ{}  List].  \mforall{}[F,G:\mBbbN{}||p||  {}\mrightarrow{}  \mBbbQ{}].
    (weighted-sum(p;\mlambda{}x.((a  *  (F  x))  +  (b  *  (G  x))))
    =  ((a  *  weighted-sum(p;F))  +  (b  *  weighted-sum(p;G))))



Date html generated: 2015_07_17-AM-07_58_20
Last ObjectModification: 2015_07_16-AM-09_52_22

Home Index