Nuprl Lemma : groupoid-nerve-filler0_wf

[G:Groupoid]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[box:open_box(cubical-nerve(cat(G));I;J;x;i)].
  groupoid-nerve-filler0(I;x;box) ∈ cubical-nerve(cat(G))(I) supposing ↑null(J)


Proof




Definitions occuring in Statement :  groupoid-nerve-filler0: groupoid-nerve-filler0(I;x;box) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) I-cube: X(I) nameset: nameset(L) coordinate_name: Cname groupoid-cat: cat(G) groupoid: Groupoid null: null(as) list: List int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt cons: [a b] top: Top bfalse: ff false: False prop: subtype_rel: A ⊆B nameset: nameset(L) l_subset: l_subset(T;as;bs) implies:  Q iff: ⇐⇒ Q and: P ∧ Q coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} sq_stable: SqStable(P) squash: T groupoid-nerve-filler0: groupoid-nerve-filler0(I;x;box) groupoid: Groupoid groupoid-cat: cat(G) pi1: fst(t) open_box: open_box(X;I;J;x;i) l_exists: (∃x∈L. P[x]) exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A I-face: I-face(X;I) pi2: snd(t) l_all: (∀x∈L.P[x]) le: A ≤ B less_than': less_than'(a;b) nat_plus: + less_than: a < b true: True decidable: Dec(P) uiff: uiff(P;Q) select: L[n]
Lemmas referenced :  nameset_wf list-cases null_nil_lemma product_subtype_list null_cons_lemma assert_wf null_wf3 subtype_rel_list top_wf open_box_wf cubical-nerve_wf groupoid-cat_wf coordinate_name_wf int_seg_wf list_wf groupoid_wf cons_member list-diff_wf cname_deq_wf cons_wf nil_wf member-list-diff l_member_wf not_wf or_wf equal_wf subtype_base_sq set_subtype_base int_subtype_base iota_wf name-morph_subtype nameset_subtype cubical-nerve-I-cube sq_stable__l_member decidable__equal-coordinate_name functor-comp_wf poset-cat_wf poset-functor_wf I-face_wf length_of_nil_lemma int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf reduce_hd_cons_lemma le_wf length_of_cons_lemma false_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff intformnot_wf itermAdd_wf intformeq_wf int_formula_prop_not_lemma int_term_value_add_lemma int_formula_prop_eq_lemma lelt_wf length_wf member_singleton
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination unionElimination sqequalRule promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry applyEquality independent_isectElimination lambdaEquality because_Cache setElimination rename natural_numberEquality lambdaFormation independent_functionElimination addLevel orFunctionality productEquality instantiate imageMemberEquality baseClosed imageElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll cumulativity dependent_set_memberEquality applyLambdaEquality pointwiseFunctionality baseApply closedConclusion addEquality equalityElimination

Latex:
\mforall{}[G:Groupoid].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(cat(G));I;J;x;i)].
    groupoid-nerve-filler0(I;x;box)  \mmember{}  cubical-nerve(cat(G))(I)  supposing  \muparrow{}null(J)



Date html generated: 2017_10_05-PM-03_43_38
Last ObjectModification: 2017_07_28-AM-11_27_03

Theory : cubical!sets


Home Index