Nuprl Lemma : groupoid-nerve-filler0_wf
∀[G:Groupoid]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[box:open_box(cubical-nerve(cat(G));I;J;x;i)].
  groupoid-nerve-filler0(I;x;box) ∈ cubical-nerve(cat(G))(I) supposing ↑null(J)
Proof
Definitions occuring in Statement : 
groupoid-nerve-filler0: groupoid-nerve-filler0(I;x;box)
, 
cubical-nerve: cubical-nerve(X)
, 
open_box: open_box(X;I;J;x;i)
, 
I-cube: X(I)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
groupoid-cat: cat(G)
, 
groupoid: Groupoid
, 
null: null(as)
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nameset: nameset(L)
, 
l_subset: l_subset(T;as;bs)
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
groupoid-nerve-filler0: groupoid-nerve-filler0(I;x;box)
, 
groupoid: Groupoid
, 
groupoid-cat: cat(G)
, 
pi1: fst(t)
, 
open_box: open_box(X;I;J;x;i)
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
I-face: I-face(X;I)
, 
pi2: snd(t)
, 
l_all: (∀x∈L.P[x])
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
true: True
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
select: L[n]
Lemmas referenced : 
nameset_wf, 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
open_box_wf, 
cubical-nerve_wf, 
groupoid-cat_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
groupoid_wf, 
cons_member, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
member-list-diff, 
l_member_wf, 
not_wf, 
or_wf, 
equal_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
iota_wf, 
name-morph_subtype, 
nameset_subtype, 
cubical-nerve-I-cube, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
functor-comp_wf, 
poset-cat_wf, 
poset-functor_wf, 
I-face_wf, 
length_of_nil_lemma, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
reduce_hd_cons_lemma, 
le_wf, 
length_of_cons_lemma, 
false_wf, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
intformnot_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
lelt_wf, 
length_wf, 
member_singleton
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
natural_numberEquality, 
lambdaFormation, 
independent_functionElimination, 
addLevel, 
orFunctionality, 
productEquality, 
instantiate, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
cumulativity, 
dependent_set_memberEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
addEquality, 
equalityElimination
Latex:
\mforall{}[G:Groupoid].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(cat(G));I;J;x;i)].
    groupoid-nerve-filler0(I;x;box)  \mmember{}  cubical-nerve(cat(G))(I)  supposing  \muparrow{}null(J)
Date html generated:
2017_10_05-PM-03_43_38
Last ObjectModification:
2017_07_28-AM-11_27_03
Theory : cubical!sets
Home
Index