Nuprl Lemma : csm-glue-term

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
[t:{Gamma, phi ⊢ _:T}]. ∀[a:{Gamma ⊢ _:A[phi |⟶ app(w; t)]}]. ∀[H:j⊢]. ∀[s:H j⟶ Gamma].
  ((glue [phi ⊢→ t] a)s H ⊢ glue [(phi)s ⊢→ (t)s] (a)s ∈ {H ⊢ _:(Glue [phi ⊢→ (T;w)] A)s})


Proof




Definitions occuring in Statement :  glue-term: glue [phi ⊢→ t] a glue-type: Glue [phi ⊢→ (T;w)] A constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cubical-app: app(w; u) cubical-fun: (A ⟶ B) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] glue-type: Glue [phi ⊢→ (T;w)] A csm-ap-type: (AF)s cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) pi1: fst(t) true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q glue-term: glue [phi ⊢→ t] a csm-ap-term: (t)s face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A context-subset: Gamma, phi constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced :  I_cube_wf fset_wf nat_wf cubical-term-equal csm-ap-type_wf glue-type_wf csm-ap-term_wf glue-term_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 context-subset_wf cube_set_map_wf constrained-cubical-term_wf cubical-app_wf_fun thin-context-subset istype-cubical-term cubical-fun_wf cubical-type_wf face-type_wf cubical_set_wf csm-face-type context-subset-map cubical-term-eqcd csm-cubical-fun csm-cubical-app csm-constrained-cubical-term cubical_type_at_pair_lemma equal-glue-cube csm-ap_wf subtype_rel_self glue-cube_wf equal_wf squash_wf true_wf istype-universe cubical-type-at_wf csm-glue-type iff_weakening_equal fl-eq_wf cubical-term-at_wf lattice-point_wf face_lattice_wf lattice-1_wf eqtt_to_assert assert-fl-eq subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf I_cube_pair_redex_lemma csm-ap-term-at csm-context-subset-subtype2 cube-set-restriction_wf csm-ap-restriction names-hom_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut functionExtensionality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry independent_isectElimination universeIsType inhabitedIsType Error :memTop,  lambdaEquality_alt hyp_replacement dependent_functionElimination setElimination rename universeEquality natural_numberEquality imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination lambdaFormation_alt unionElimination equalityElimination productEquality cumulativity isectEquality dependent_pairFormation_alt equalityIstype promote_hyp voidElimination dependent_set_memberEquality_alt independent_pairEquality setEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{Gamma,  phi  \mvdash{}  \_:T\}].  \mforall{}[a:\{Gamma  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  app(w;  t)]\}].
\mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  Gamma].
    ((glue  [phi  \mvdash{}\mrightarrow{}  t]  a)s  =  H  \mvdash{}  glue  [(phi)s  \mvdash{}\mrightarrow{}  (t)s]  (a)s)



Date html generated: 2020_05_20-PM-05_43_37
Last ObjectModification: 2020_04_21-PM-07_35_10

Theory : cubical!type!theory


Home Index