Nuprl Lemma : member-cubical-path-0-0

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)]. ∀[u:Top]. ∀[x:A((i0)(rho))].
  (x ∈ cubical-path-0(Gamma;A;I;i;rho;0;u))


Proof




Definitions occuring in Statement :  cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-type-at: A(a) cubical-type: {X ⊢ _} face_lattice: face_lattice(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-0: (i0) add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] top: Top not: ¬A member: t ∈ T set: {x:A| B[x]}  lattice-0: 0
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) subtype_rel: A ⊆B prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] cubical-term: {X ⊢ _:A} name-morph-satisfies: (psi f) 1 cube-set-restriction: f(s) pi2: snd(t) face-presheaf: 𝔽 fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt empty-fset: {} nil: [] it: bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) squash: T true: True guard: {T} iff: ⇐⇒ Q lattice-point: Point(l) I_cube: A(I) functor-ob: ob(F) pi1: fst(t)
Lemmas referenced :  cubical-path-condition-0 cubical-path-condition_wf lattice-0_wf face_lattice_wf istype-cubical-type-at cube-set-restriction_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nc-0_wf istype-top I_cube_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf cubical-type_wf cubical_set_wf cubical-subset-I_cube-member nc-s_wf f-subset-add-name equal_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fl-morph_wf lattice-1_wf squash_wf true_wf istype-universe fl-morph-0 subtype_rel_self iff_weakening_equal face-lattice-0-not-1 cubical-subset_wf face-presheaf_wf2 csm-ap-type-at names-hom_wf csm-ap-type_wf cubical_set_cumulativity-i-j csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf cubical-type-ap-morph_wf face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt dependent_set_memberEquality_alt hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis universeIsType instantiate because_Cache applyEquality sqequalRule setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation voidElimination setIsType functionIsType intEquality functionExtensionality productElimination inhabitedIsType equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality productEquality cumulativity isectEquality imageElimination universeEquality imageMemberEquality baseClosed lambdaFormation_alt equalityIstype

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[rho:Gamma(I+i)].  \mforall{}[u:Top].
\mforall{}[x:A((i0)(rho))].
    (x  \mmember{}  cubical-path-0(Gamma;A;I;i;rho;0;u))



Date html generated: 2020_05_20-PM-03_46_22
Last ObjectModification: 2020_04_09-AM-11_04_41

Theory : cubical!type!theory


Home Index