Nuprl Lemma : nc-m-nc-1

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ I+i} ].  (m(i;j) ⋅ (j1) 1 ∈ I+i ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-m: m(i;j) nc-1: (i1) add-name: I+i nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] names-hom: I ⟶ J member: t ∈ T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] names: names(I) sq_type: SQType(T) guard: {T} nequal: a ≠ b ∈  squash: T DeMorgan-algebra: DeMorganAlgebra nc-1: (i1) nh-id: 1 bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b sq_stable: SqStable(P) true: True dM1: 1 nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-m: m(i;j) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  names_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le fset-member_wf nat_wf int-deq_wf istype-void istype-nat strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf nc-1_wf trivial-member-add-name1 decidable__equal_int subtype_base_sq int_subtype_base not-added-name nh-comp-nc-m equal_wf squash_wf true_wf istype-universe lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM1-sq-singleton-empty eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma lattice-meet-1 bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype DeMorgan-algebra_wf bdd-distributive-lattice_wf bdd-lattice_wf dM_inc_wf dM-lift-inc dM1_wf names-subtype f-subset-add-name subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt functionExtensionality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt setElimination rename hypothesis dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination setIsType because_Cache functionIsType applyEquality intEquality instantiate cumulativity hyp_replacement equalitySymmetry imageElimination equalityTransitivity universeEquality productEquality isectEquality inhabitedIsType lambdaFormation_alt equalityElimination productElimination equalityIstype promote_hyp imageMemberEquality baseClosed

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I+i\}  ].    (m(i;j)  \mcdot{}  (j1)  =  1)



Date html generated: 2020_05_20-PM-01_36_53
Last ObjectModification: 2020_01_15-PM-02_19_15

Theory : cubical!type!theory


Home Index