Nuprl Lemma : hp-angle-sum-eq3
∀e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
  (abc ≅a a'b'c' 
⇒ ijk ≅a i'j'k' 
⇒ abc + xyz ≅ ijk 
⇒ a'b'c' + x'y'z' ≅ i'j'k' 
⇒ a # bc 
⇒ i # jk 
⇒ xyz ≅a x'y'z')
Proof
Definitions occuring in Statement : 
hp-angle-sum: abc + xyz ≅ def
, 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
oriented-plane: OrientedPlane
, 
or: P ∨ Q
, 
geo-lsep: a # bc
, 
true: True
, 
squash: ↓T
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
geo-tri: Triangle(a;b;c)
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
geo-cong-angle: abc ≅a xyz
, 
basic-geometry-: BasicGeometry-
, 
cand: A c∧ B
, 
geo-out: out(p ab)
, 
euclidean-plane: EuclideanPlane
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
basic-geometry: BasicGeometry
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
hp-angle-sum: abc + xyz ≅ def
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
between-preserves-left-3, 
between-preserves-left-5, 
geo-strict-between_functionality, 
geo-out_functionality, 
geo-congruent_functionality, 
geo-left_functionality, 
geo-cong-angle_functionality, 
out-cong-angle, 
geo-cong-angle-symm3, 
geo-cong-angle-symmetry, 
geo-eq_inversion, 
geo-left_wf, 
Euclid-Prop7, 
between-preserves-left-1, 
left-implies-sep, 
geo-between-exchange4, 
geo-between-exchange3, 
between-preserves-left-2, 
geo-left-out-4, 
left-symmetry, 
geo-between-out, 
basic-geometry_wf, 
geo-length-type_wf, 
true_wf, 
squash_wf, 
geo-add-length_wf, 
geo-strict-between-implies-between, 
geo-between-symmetry, 
geo-add-length-between, 
geo-congruent-refl, 
geo-strict-between-sep2, 
p8geo, 
geo-between-trivial, 
geo-length-flip, 
geo-congruent_wf, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-strict-between-sep1, 
geo-cong-angle-transitivity, 
geo-eq_weakening, 
geo-out_weakening, 
geo-out_inversion, 
istype-void, 
geo-between_wf, 
geo-between-sep, 
lsep-implies-sep, 
out-preserves-angle-cong_1, 
geo-congruent-iff-length, 
geo-sas2, 
geo-out_transitivity, 
euclidean-plane-axioms, 
geo-out-interior-point-exists, 
lsep-symmetry, 
geo-cong-angle-symm2, 
cong-angle-preserves-lsep_strong, 
geo-strict-between-sym, 
geo-out-if-between, 
lsep-all-sym, 
out-preserves-lsep, 
geo-strict-between-sep3, 
geo-sep-O-X, 
geo-sep-sym, 
geo-X_wf, 
geo-O_wf, 
geo-proper-extend-exists, 
geo-point_wf, 
geo-cong-angle_wf, 
hp-angle-sum_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-lsep_wf
Rules used in proof : 
promote_hyp, 
dependent_set_memberEquality_alt, 
unionElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
functionIsType, 
productIsType, 
voidElimination, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
independent_functionElimination, 
rename, 
setElimination, 
productElimination, 
inhabitedIsType, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
universeIsType, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
    (abc  \mcong{}\msuba{}  a'b'c'
    {}\mRightarrow{}  ijk  \mcong{}\msuba{}  i'j'k'
    {}\mRightarrow{}  abc  +  xyz  \mcong{}  ijk
    {}\mRightarrow{}  a'b'c'  +  x'y'z'  \mcong{}  i'j'k'
    {}\mRightarrow{}  a  \#  bc
    {}\mRightarrow{}  i  \#  jk
    {}\mRightarrow{}  xyz  \mcong{}\msuba{}  x'y'z')
Date html generated:
2019_10_29-AM-09_21_19
Last ObjectModification:
2019_10_18-PM-04_51_08
Theory : euclidean!plane!geometry
Home
Index