Nuprl Lemma : ip-non-trivial
∀rv:InnerProductSpace. ∀x:{x:Point| r0 < ||x||} .  ∃a:Point. (∃b:{Point| a # b})
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
inner-product-space: InnerProductSpace
, 
rless: x < y
, 
int-to-real: r(n)
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
exists: ∃x:A. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
sq_exists: ∃x:{A| B[x]}
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
true: True
, 
rge: x ≥ y
, 
subtract: n - m
Lemmas referenced : 
sq_exists_wf, 
ss-point_wf, 
ss-sep_wf, 
set_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rless_wf, 
int-to-real_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
rv-perp-1, 
rv-norm-positive-iff, 
sq_stable__rless, 
rv-sep-iff-norm, 
square-rless-implies, 
rv-sub_wf, 
rv-norm-nonneg, 
rnexp_wf, 
false_wf, 
le_wf, 
radd_wf, 
rsub_wf, 
less_than_wf, 
rless_functionality, 
rnexp0, 
req_transitivity, 
rv-norm-squared, 
rv-ip-sub-squared, 
radd_functionality, 
rsub_functionality, 
req_weakening, 
rmul_functionality, 
rv-ip-nonneg, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
rsub_functionality_wrt_rleq, 
rless-int, 
subtract_wf, 
radd-int, 
rsub-int, 
rmul-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
because_Cache, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
instantiate, 
independent_isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
addEquality, 
addLevel, 
levelHypothesis
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:\{x:Point|  r0  <  ||x||\}  .    \mexists{}a:Point.  (\mexists{}b:\{Point|  a  \#  b\})
Date html generated:
2017_10_05-AM-00_12_38
Last ObjectModification:
2017_03_15-PM-11_52_33
Theory : inner!product!spaces
Home
Index