Nuprl Lemma : translation-group_wf

rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.
  translation-group(rv;e;T) ∈ s-Group supposing translation-group-fun(rv;e;T)


Proof




Definitions occuring in Statement :  translation-group: translation-group(rv;e;T) translation-group-fun: translation-group-fun(rv;e;T) inner-product-space: InnerProductSpace real: s-group: s-Group ss-point: Point uimplies: supposing a all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T translation-group: translation-group(rv;e;T) uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} top: Top so_apply: x[s] sg-subgroup: sg-subgroup(sg;x.P[x]) and: P ∧ Q cand: c∧ B implies:  Q prop: pi1: fst(t) exists: x:A. B[x] trans-apply: T_t(x) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) translation-group-fun: translation-group-fun(rv;e;T) sq_stable: SqStable(P) squash: T ss-eq: x ≡ y not: ¬A false: False compose: g
Lemmas referenced :  mk-s-subgroup_wf rv-permutation-group_wf exists_wf real_wf all_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-eq_wf rv-perm-point pi1_wf_top subtype_rel_product top_wf s-group-structure_subtype1 s-group_subtype1 s-group_wf s-group-structure_wf translation-group-fun_wf rv-perm-id int-to-real_wf trans-apply_wf ss-eq_weakening ss-eq_functionality trans-apply-0 rv-perm-inv rminus_wf sq_stable__ss-eq radd_wf radd-rminus ss-eq_inversion trans-apply_functionality ss-sep_wf rv-perm-op compose_wf ss-eq_transitivity req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality instantiate independent_isectElimination because_Cache isect_memberEquality voidElimination voidEquality functionEquality setElimination rename functionExtensionality independent_pairFormation productElimination axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination dependent_pairFormation natural_numberEquality independent_functionElimination promote_hyp imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    translation-group(rv;e;T)  \mmember{}  s-Group  supposing  translation-group-fun(rv;e;T)



Date html generated: 2017_10_05-AM-00_22_04
Last ObjectModification: 2017_06_24-PM-04_53_20

Theory : inner!product!spaces


Home Index