Nuprl Lemma : translation-group_wf
∀rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.
  translation-group(rv;e;T) ∈ s-Group supposing translation-group-fun(rv;e;T)
Proof
Definitions occuring in Statement : 
translation-group: translation-group(rv;e;T)
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
inner-product-space: InnerProductSpace
, 
real: ℝ
, 
s-group: s-Group
, 
ss-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
translation-group: translation-group(rv;e;T)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
top: Top
, 
so_apply: x[s]
, 
sg-subgroup: sg-subgroup(sg;x.P[x])
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
pi1: fst(t)
, 
exists: ∃x:A. B[x]
, 
trans-apply: T_t(x)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
false: False
, 
compose: f o g
Lemmas referenced : 
mk-s-subgroup_wf, 
rv-permutation-group_wf, 
exists_wf, 
real_wf, 
all_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-eq_wf, 
rv-perm-point, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
s-group-structure_subtype1, 
s-group_subtype1, 
s-group_wf, 
s-group-structure_wf, 
translation-group-fun_wf, 
rv-perm-id, 
int-to-real_wf, 
trans-apply_wf, 
ss-eq_weakening, 
ss-eq_functionality, 
trans-apply-0, 
rv-perm-inv, 
rminus_wf, 
sq_stable__ss-eq, 
radd_wf, 
radd-rminus, 
ss-eq_inversion, 
trans-apply_functionality, 
ss-sep_wf, 
rv-perm-op, 
compose_wf, 
ss-eq_transitivity, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
setElimination, 
rename, 
functionExtensionality, 
independent_pairFormation, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
dependent_pairFormation, 
natural_numberEquality, 
independent_functionElimination, 
promote_hyp, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    translation-group(rv;e;T)  \mmember{}  s-Group  supposing  translation-group-fun(rv;e;T)
Date html generated:
2017_10_05-AM-00_22_04
Last ObjectModification:
2017_06_24-PM-04_53_20
Theory : inner!product!spaces
Home
Index