Nuprl Lemma : proper-continuous-is-continuous
∀I:Interval. (iproper(I) 
⇒ (∀f:I ⟶ℝ. (f[x] (proper)continuous for x ∈ I 
⇒ f[x] continuous for x ∈ I)))
Proof
Definitions occuring in Statement : 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
iproper: iproper(I)
, 
interval: Interval
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
continuous: f[x] continuous for x ∈ I
, 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
subinterval: I ⊆ J 
, 
guard: {T}
, 
sq_exists: ∃x:{A| B[x]}
, 
rneq: x ≠ y
, 
rless: x < y
Lemmas referenced : 
decidable__lt, 
false_wf, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
iproper-approx, 
icompact_wf, 
i-approx_wf, 
iproper_wf, 
set_wf, 
nat_plus_wf, 
proper-continuous_wf, 
i-member_wf, 
real_wf, 
rfun_wf, 
interval_wf, 
i-approx-monotonic, 
sq_stable__icompact, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
i-approx-is-subinterval, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rless_wf, 
int-to-real_wf, 
all_wf, 
rdiv_wf, 
rless-int, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
cut, 
dependent_set_memberEquality, 
addEquality, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
introduction, 
extract_by_obid, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
productEquality, 
setEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
functionEquality, 
inrFormation
Latex:
\mforall{}I:Interval
    (iproper(I)  {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  (f[x]  (proper)continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I)))
Date html generated:
2016_10_26-AM-09_51_00
Last ObjectModification:
2016_09_19-PM-00_38_31
Theory : reals
Home
Index