Nuprl Lemma : proper-continuous-is-continuous

I:Interval. (iproper(I)  (∀f:I ⟶ℝ(f[x] (proper)continuous for x ∈  f[x] continuous for x ∈ I)))


Proof




Definitions occuring in Statement :  proper-continuous: f[x] (proper)continuous for x ∈ I continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ iproper: iproper(I) interval: Interval so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q continuous: f[x] continuous for x ∈ I proper-continuous: f[x] (proper)continuous for x ∈ I member: t ∈ T nat_plus: + decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ sq_stable: SqStable(P) squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] subinterval: I ⊆  guard: {T} sq_exists: x:{A| B[x]} rneq: x ≠ y rless: x < y
Lemmas referenced :  decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf iproper-approx icompact_wf i-approx_wf iproper_wf set_wf nat_plus_wf proper-continuous_wf i-member_wf real_wf rfun_wf interval_wf i-approx-monotonic sq_stable__icompact nat_plus_properties decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf i-approx-is-subinterval rleq_wf rabs_wf rsub_wf rless_wf int-to-real_wf all_wf rdiv_wf rless-int intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution dependent_functionElimination thin setElimination rename cut dependent_set_memberEquality addEquality hypothesisEquality hypothesis natural_numberEquality introduction extract_by_obid unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination isectElimination sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality productEquality setEquality imageMemberEquality baseClosed imageElimination dependent_pairFormation int_eqEquality computeAll functionEquality inrFormation

Latex:
\mforall{}I:Interval
    (iproper(I)  {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  (f[x]  (proper)continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I)))



Date html generated: 2016_10_26-AM-09_51_00
Last ObjectModification: 2016_09_19-PM-00_38_31

Theory : reals


Home Index