Nuprl Lemma : raise-left-endpoint-rless
∀a,b:ℝ. ∀n:ℕ+.  ((a < b) 
⇒ ((a < raise-left-endpoint(a;b;n)) ∧ (raise-left-endpoint(a;b;n) < b)))
Proof
Definitions occuring in Statement : 
raise-left-endpoint: raise-left-endpoint(a;b;n)
, 
rless: x < y
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
raise-left-endpoint: raise-left-endpoint(a;b;n)
, 
int_nzero: ℤ-o
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
Lemmas referenced : 
real_wf, 
req_weakening, 
radd-int, 
req_inversion, 
rmul_functionality, 
radd_functionality, 
req_functionality, 
equal_wf, 
int-to-real_wf, 
rmul_wf, 
radd_wf, 
rmul-distrib2, 
rmul-identity1, 
radd-assoc, 
req_transitivity, 
radd_comm, 
rmul_comm, 
rmul-one-both, 
rmul-distrib, 
uiff_transitivity, 
req_wf, 
rless_wf, 
nat_plus_wf, 
int-rdiv_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
equal-wf-T-base, 
nequal_wf, 
int-rmul_wf, 
rdiv_wf, 
rless-int, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
rmul_preserves_rless, 
rinv_wf2, 
rless_functionality, 
int-rdiv-req, 
rdiv_functionality, 
int-rmul-req, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
real_term_value_add_lemma, 
rmul-rinv3, 
radd-preserves-rless, 
rless-implies-rless, 
rsub_wf
Rules used in proof : 
cut, 
hypothesis, 
extract_by_obid, 
introduction, 
intEquality, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
natural_numberEquality, 
addEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
sqequalRule, 
independent_pairFormation, 
dependent_set_memberEquality, 
setElimination, 
rename, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
inrFormation, 
unionElimination
Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    ((a  <  b)  {}\mRightarrow{}  ((a  <  raise-left-endpoint(a;b;n))  \mwedge{}  (raise-left-endpoint(a;b;n)  <  b)))
Date html generated:
2017_10_03-AM-09_32_25
Last ObjectModification:
2017_07_28-AM-07_50_46
Theory : reals
Home
Index