Nuprl Lemma : rational-approx-converges-to
∀[x:ℝ]. lim n→∞.(x within 1/n + 1) = x
Proof
Definitions occuring in Statement :
converges-to: lim n→∞.x[n] = y
,
rational-approx: (x within 1/n)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
converges-to: lim n→∞.x[n] = y
,
all: ∀x:A. B[x]
,
sq_exists: ∃x:{A| B[x]}
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
implies: P
⇒ Q
,
prop: ℙ
,
nat_plus: ℕ+
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
real: ℝ
,
le: A ≤ B
,
and: P ∧ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
false: False
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
subtract: n - m
,
top: Top
,
less_than': less_than'(a;b)
,
true: True
,
rneq: x ≠ y
,
guard: {T}
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
so_apply: x[s]
,
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
Lemmas referenced :
nat_plus_subtype_nat,
le_wf,
nat_wf,
all_wf,
rleq_wf,
rabs_wf,
rsub_wf,
rational-approx_wf,
decidable__lt,
false_wf,
not-lt-2,
condition-implies-le,
minus-add,
minus-one-mul,
zero-add,
minus-one-mul-top,
add-commutes,
add_functionality_wrt_le,
add-associates,
add-zero,
le-add-cancel,
less_than_wf,
rdiv_wf,
int-to-real_wf,
rless-int,
nat_properties,
nat_plus_properties,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
rless_wf,
nat_plus_wf,
real_wf,
less-iff-le,
add-swap,
itermAdd_wf,
intformle_wf,
int_term_value_add_lemma,
int_formula_prop_le_lemma,
rleq-int-fractions,
decidable__le,
itermMultiply_wf,
int_term_value_mul_lemma,
rleq_functionality,
rabs-difference-symmetry,
req_weakening,
rleq_functionality_wrt_implies,
rational-approx-property,
rleq_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
dependent_set_memberFormation,
cut,
hypothesisEquality,
applyEquality,
introduction,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
sqequalRule,
isectElimination,
thin,
setElimination,
rename,
lambdaEquality,
functionEquality,
because_Cache,
dependent_set_memberEquality,
addEquality,
natural_numberEquality,
productElimination,
dependent_functionElimination,
unionElimination,
independent_pairFormation,
voidElimination,
independent_functionElimination,
independent_isectElimination,
isect_memberEquality,
voidEquality,
intEquality,
minusEquality,
inrFormation,
approximateComputation,
dependent_pairFormation,
int_eqEquality,
multiplyEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[x:\mBbbR{}]. lim n\mrightarrow{}\minfty{}.(x within 1/n + 1) = x
Date html generated:
2017_10_03-AM-08_51_34
Last ObjectModification:
2017_06_30-PM-04_10_52
Theory : reals
Home
Index