Nuprl Lemma : rroot-exists

i:{2...}. ∀x:{x:ℝ(↑isEven(i))  (r0 ≤ x)} .  (∃y:{ℝ(((↑isEven(i))  (r0 ≤ y)) ∧ (y^i x))})


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 req: y int-to-real: r(n) real: isEven: isEven(n) int_upper: {i...} assert: b all: x:A. B[x] sq_exists: x:{A| B[x]} implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q converges: x[n]↓ as n→∞ sq_exists: x:{A| B[x]} cand: c∧ B prop: uall: [x:A]. B[x] int_upper: {i...} subtype_rel: A ⊆B nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A uimplies: supposing a sq_stable: SqStable(P) squash: T guard: {T} top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  subtract: m rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rroot-exists1-ext rroot-exists-part2 converges-iff-cauchy nat_wf assert_wf isEven_wf rleq_wf int-to-real_wf req_wf rnexp_wf int_upper_subtype_nat false_wf le_wf set_wf real_wf int_upper_wf constant-rleq-limit sq_stable__rleq unique-limit rnexp_zero_lemma constant-limit req_weakening rmul-limit converges-to_wf subtract_wf nat_properties int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf less_than_wf primrec-wf2 equal_wf converges-to_functionality rmul_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma int_subtype_base rmul_comm req_functionality rnexp_unroll rmul-one-both
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination sqequalRule lambdaEquality applyEquality setElimination rename dependent_set_memberFormation isectElimination independent_pairFormation productEquality functionEquality because_Cache natural_numberEquality dependent_set_memberEquality independent_isectElimination functionExtensionality imageMemberEquality baseClosed imageElimination isect_memberEquality voidElimination voidEquality unionElimination dependent_pairFormation int_eqEquality intEquality computeAll equalityTransitivity equalitySymmetry equalityElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .    (\mexists{}y:\{\mBbbR{}|  (((\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  y))  \mwedge{}  (y\^{}i  =  x))\})



Date html generated: 2017_10_03-AM-10_39_20
Last ObjectModification: 2017_07_28-AM-08_15_44

Theory : reals


Home Index