Nuprl Lemma : rroot-exists-part2

i:{2...}. ∀x:{x:ℝ(↑isEven(i))  (r0 ≤ x)} . ∀q:{q:ℕ ⟶ ℝ
                                                   (∀n,m:ℕ.
                                                      (((r0 ≤ (q n)) ∧ (r0 ≤ (q m))) ∨ (((q n) ≤ r0) ∧ ((q m) ≤ r0))))
                                                   ∧ ((↑isEven(i))  (∀m:ℕ(r0 ≤ (q m))))} .
  (lim n→∞.q n^i  cauchy(n.q n))


Proof




Definitions occuring in Statement :  cauchy: cauchy(n.x[n]) converges-to: lim n→∞.x[n] y rleq: x ≤ y rnexp: x^k1 int-to-real: r(n) real: isEven: isEven(n) int_upper: {i...} nat: assert: b all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y exists: x:A. B[x] cauchy: cauchy(n.x[n]) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: so_lambda: λ2x.t[x] nat: le: A ≤ B false: False not: ¬A so_apply: x[s] or: P ∨ Q int_upper: {i...} sq_exists: x:{A| B[x]} uimplies: supposing a rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rless: x < y real:
Lemmas referenced :  exp_wf_nat_plus mul_nat_plus less_than_wf converges-to_wf rnexp_wf int_upper_subtype_nat false_wf le_wf nat_wf set_wf real_wf all_wf or_wf rleq_wf int-to-real_wf assert_wf isEven_wf int_upper_wf sq_exists_wf rabs_wf rsub_wf rdiv_wf rless-int nat_properties nat_plus_properties int_upper_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf less_than'_wf squash_wf sq_stable__all sq_stable__rleq equal_wf exp-fastexp intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma equal-wf-T-base exp_wf2 r-triangle-inequality2 radd_wf exp-positive not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel rleq_functionality_wrt_implies rleq_weakening_equal mul_bounds_1b radd_functionality_wrt_rleq rleq_functionality radd_functionality rabs-difference-symmetry req_weakening rleq-int-fractions decidable__le intformle_wf itermAdd_wf int_formula_prop_le_lemma int_term_value_add_lemma req_transitivity radd-rdiv rdiv_functionality radd-int rnexp-convex3 rnexp-rdiv rnexp-positive req_functionality rnexp-int req_wf true_wf rneq_wf exp-one iff_weakening_equal rleq_transitivity rleq_weakening rnexp-rleq-iff zero-rleq-rabs rleq-int-fractions2 sq_stable__less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut hypothesis promote_hyp thin productElimination introduction extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache sqequalRule dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed equalityTransitivity equalitySymmetry lambdaEquality setElimination rename functionEquality productEquality functionExtensionality independent_isectElimination inrFormation dependent_functionElimination independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll minusEquality independent_pairEquality axiomEquality imageElimination applyLambdaEquality dependent_set_memberFormation multiplyEquality addEquality universeEquality

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .  \mforall{}q:\{q:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}| 
                                                                                                      (\mforall{}n,m:\mBbbN{}.
                                                                                                            (((r0  \mleq{}  (q  n))  \mwedge{}  (r0  \mleq{}  (q  m)))
                                                                                                            \mvee{}  (((q  n)  \mleq{}  r0)  \mwedge{}  ((q  m)  \mleq{}  r0))))
                                                                                                      \mwedge{}  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (r0  \mleq{}  (q  m))))\}  .
    (lim  n\mrightarrow{}\minfty{}.q  n\^{}i  =  x  {}\mRightarrow{}  cauchy(n.q  n))



Date html generated: 2017_10_03-AM-10_39_01
Last ObjectModification: 2017_07_28-AM-08_15_31

Theory : reals


Home Index