Nuprl Lemma : rroot-exists-part2
∀i:{2...}. ∀x:{x:ℝ| (↑isEven(i)) 
⇒ (r0 ≤ x)} . ∀q:{q:ℕ ⟶ ℝ| 
                                                   (∀n,m:ℕ.
                                                      (((r0 ≤ (q n)) ∧ (r0 ≤ (q m))) ∨ (((q n) ≤ r0) ∧ ((q m) ≤ r0))))
                                                   ∧ ((↑isEven(i)) 
⇒ (∀m:ℕ. (r0 ≤ (q m))))} .
  (lim n→∞.q n^i = x 
⇒ cauchy(n.q n))
Proof
Definitions occuring in Statement : 
cauchy: cauchy(n.x[n])
, 
converges-to: lim n→∞.x[n] = y
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
int-to-real: r(n)
, 
real: ℝ
, 
isEven: isEven(n)
, 
int_upper: {i...}
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
converges-to: lim n→∞.x[n] = y
, 
exists: ∃x:A. B[x]
, 
cauchy: cauchy(n.x[n])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
int_upper: {i...}
, 
sq_exists: ∃x:{A| B[x]}
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
sq_stable: SqStable(P)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
rless: x < y
, 
real: ℝ
Lemmas referenced : 
exp_wf_nat_plus, 
mul_nat_plus, 
less_than_wf, 
converges-to_wf, 
rnexp_wf, 
int_upper_subtype_nat, 
false_wf, 
le_wf, 
nat_wf, 
set_wf, 
real_wf, 
all_wf, 
or_wf, 
rleq_wf, 
int-to-real_wf, 
assert_wf, 
isEven_wf, 
int_upper_wf, 
sq_exists_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
int_upper_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
nat_plus_wf, 
less_than'_wf, 
squash_wf, 
sq_stable__all, 
sq_stable__rleq, 
equal_wf, 
exp-fastexp, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
equal-wf-T-base, 
exp_wf2, 
r-triangle-inequality2, 
radd_wf, 
exp-positive, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
mul_bounds_1b, 
radd_functionality_wrt_rleq, 
rleq_functionality, 
radd_functionality, 
rabs-difference-symmetry, 
req_weakening, 
rleq-int-fractions, 
decidable__le, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
req_transitivity, 
radd-rdiv, 
rdiv_functionality, 
radd-int, 
rnexp-convex3, 
rnexp-rdiv, 
rnexp-positive, 
req_functionality, 
rnexp-int, 
req_wf, 
true_wf, 
rneq_wf, 
exp-one, 
iff_weakening_equal, 
rleq_transitivity, 
rleq_weakening, 
rnexp-rleq-iff, 
zero-rleq-rabs, 
rleq-int-fractions2, 
sq_stable__less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
promote_hyp, 
thin, 
productElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
setElimination, 
rename, 
functionEquality, 
productEquality, 
functionExtensionality, 
independent_isectElimination, 
inrFormation, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
minusEquality, 
independent_pairEquality, 
axiomEquality, 
imageElimination, 
applyLambdaEquality, 
dependent_set_memberFormation, 
multiplyEquality, 
addEquality, 
universeEquality
Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .  \mforall{}q:\{q:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}| 
                                                                                                      (\mforall{}n,m:\mBbbN{}.
                                                                                                            (((r0  \mleq{}  (q  n))  \mwedge{}  (r0  \mleq{}  (q  m)))
                                                                                                            \mvee{}  (((q  n)  \mleq{}  r0)  \mwedge{}  ((q  m)  \mleq{}  r0))))
                                                                                                      \mwedge{}  ((\muparrow{}isEven(i))  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (r0  \mleq{}  (q  m))))\}  .
    (lim  n\mrightarrow{}\minfty{}.q  n\^{}i  =  x  {}\mRightarrow{}  cauchy(n.q  n))
Date html generated:
2017_10_03-AM-10_39_01
Last ObjectModification:
2017_07_28-AM-08_15_31
Theory : reals
Home
Index