Nuprl Lemma : rv-line-circle-lemma

n:ℕ. ∀r:ℝ. ∀p,q:ℝ^n.
  (p ≠ q
   (||p|| ≤ r)
   let in
         (r0 ≤ (((r(2) p⋅v) r(2) p⋅v) r(4) ||v||^2 (||p||^2 r^2)))
         ∧ (||p quadratic1(||v||^2;r(2) p⋅v;||p||^2 r^2)*v|| r)
         ∧ (||p quadratic2(||v||^2;r(2) p⋅v;||p||^2 r^2)*v|| r))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec-norm: ||x|| dot-product: x⋅y real-vec-mul: a*X real-vec-sub: Y real-vec-add: Y real-vec: ^n quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) rleq: x ≤ y rnexp: x^k1 rsub: y req: y rmul: b int-to-real: r(n) real: nat: let: let all: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uimplies: supposing a subtype_rel: A ⊆B real-vec-sep: a ≠ b real-vec-dist: d(x;y) let: let not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: rev_uimplies: rev_uimplies(P;Q) top: Top req_int_terms: t1 ≡ t2 itermConstant: "const" uiff: uiff(P;Q) real: rnonneg: rnonneg(x) rleq: x ≤ y guard: {T} rge: x ≥ y or: P ∨ Q rneq: x ≠ y
Lemmas referenced :  nat_wf real_wf real-vec_wf real-vec-sep_wf real-vec-norm_wf rleq_wf rv-line-circle-lemma0 real-vec-dist-symmetry req_weakening rless_functionality real-vec-dist_wf int-to-real_wf equal_wf real-vec-sub_wf rmul_wf dot-product_wf le_wf false_wf rnexp_wf rsub_wf rless_wf rmul_functionality radd_functionality real_term_value_add_lemma real_term_value_var_lemma itermAdd_wf itermVar_wf req_transitivity req-iff-rsub-is-0 real_term_value_mul_lemma real_term_value_sub_lemma real_term_value_const_lemma itermConstant_wf itermMultiply_wf itermSubtract_wf real_term_polynomial rnexp2 rsub_functionality rleq_functionality radd_wf nat_plus_wf less_than'_wf rleq-int rmul_preserves_rleq2 rnexp-positive real-vec-norm-squared dot-product-linearity2 dot-product-linearity1 req_functionality req-implies-req dot-product-comm iff_wf req_wf real-vec-mul_wf real-vec-add_wf real-vec-norm-eq-iff rleq_weakening_equal rleq_functionality_wrt_implies real-vec-norm-nonneg req_inversion quadratic2_wf quadratic1_wf quadratic-formula1
Rules used in proof :  hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_functionElimination independent_functionElimination productElimination independent_isectElimination because_Cache sqequalRule setEquality rename setElimination lambdaEquality applyEquality natural_numberEquality equalitySymmetry equalityTransitivity independent_pairFormation dependent_set_memberEquality int_eqEquality voidEquality isect_memberEquality intEquality computeAll axiomEquality minusEquality voidElimination independent_pairEquality isect_memberFormation andLevelFunctionality productEquality impliesFunctionality addLevel promote_hyp allFunctionality inrFormation inlFormation

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}r:\mBbbR{}.  \mforall{}p,q:\mBbbR{}\^{}n.
    (p  \mneq{}  q
    {}\mRightarrow{}  (||p||  \mleq{}  r)
    {}\mRightarrow{}  let  v  =  q  -  p  in
                  (r0  \mleq{}  (((r(2)  *  p\mcdot{}v)  *  r(2)  *  p\mcdot{}v)  -  r(4)  *  ||v||\^{}2  *  (||p||\^{}2  -  r\^{}2)))
                  \mwedge{}  (||p  +  quadratic1(||v||\^{}2;r(2)  *  p\mcdot{}v;||p||\^{}2  -  r\^{}2)*v||  =  r)
                  \mwedge{}  (||p  +  quadratic2(||v||\^{}2;r(2)  *  p\mcdot{}v;||p||\^{}2  -  r\^{}2)*v||  =  r))



Date html generated: 2018_05_22-PM-02_29_40
Last ObjectModification: 2018_03_23-PM-04_32_53

Theory : reals


Home Index