Nuprl Lemma : atan-size-bound_wf
∀[x:{x:ℝ| |x| ≤ (r1/r(2))} ]. (atan-size-bound(x) ∈ {a:{2...}| |x| ≤ (r1/r(a))} )
Proof
Definitions occuring in Statement : 
atan-size-bound: atan-size-bound(x), 
rdiv: (x/y), 
rleq: x ≤ y, 
rabs: |x|, 
int-to-real: r(n), 
real: ℝ, 
int_upper: {i...}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
false: False, 
and: P ∧ Q, 
rational-upper-approx: above x within 1/n, 
atan-size-bound: atan-size-bound(x), 
subtype_rel: A ⊆r B, 
real: ℝ, 
sq_type: SQType(T), 
guard: {T}, 
rabs: |x|, 
has-value: (a)↓, 
int_upper: {i...}, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
rneq: x ≠ y, 
true: True, 
less_than: a < b, 
squash: ↓T, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
nat: ℕ
Lemmas referenced : 
rational-upper-approx-property, 
rabs_wf, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
subtype_base_sq, 
int_subtype_base, 
absval-non-neg, 
value-type-has-value, 
int-value-type, 
imax_wf, 
divide_wfa, 
intformand_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
nequal_wf, 
imax_ub, 
istype-false, 
istype-le, 
rleq_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
int_upper_properties, 
rless_wf, 
int-rdiv_wf, 
real_wf, 
imax_unfold, 
iff_weakening_equal, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
le_wf, 
rleq_functionality, 
req_weakening, 
int-rdiv-req, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq-int-fractions, 
div_rem_sum2, 
rem_bounds_1, 
decidable__le, 
subtract_wf, 
remainder_wfa, 
itermSubtract_wf, 
itermMultiply_wf, 
int_term_value_subtract_lemma, 
int_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
productElimination, 
callbyvalueReduce, 
sqleReflexivity, 
applyEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
instantiate, 
cumulativity, 
intEquality, 
because_Cache, 
addEquality, 
int_eqEquality, 
independent_pairFormation, 
inrFormation_alt, 
equalityIstype, 
baseClosed, 
sqequalBase, 
axiomEquality, 
setIsType, 
closedConclusion, 
imageMemberEquality, 
baseApply, 
sqequalIntensionalEquality, 
equalityElimination, 
promote_hyp, 
imageElimination, 
multiplyEquality
Latex:
\mforall{}[x:\{x:\mBbbR{}|  |x|  \mleq{}  (r1/r(2))\}  ].  (atan-size-bound(x)  \mmember{}  \{a:\{2...\}|  |x|  \mleq{}  (r1/r(a))\}  )
Date html generated:
2019_10_31-AM-06_08_08
Last ObjectModification:
2019_04_03-PM-04_54_46
Theory : reals_2
Home
Index