Nuprl Lemma : derivative-rsqrt
d(rsqrt(x))/dx = λx.(r1/r(2) * rsqrt(x)) on (r0, ∞)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I, 
rsqrt: rsqrt(x), 
roiint: (l, ∞), 
rdiv: (x/y), 
rmul: a * b, 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ, 
top: Top, 
so_apply: x[s], 
sq_stable: SqStable(P), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
subtype_rel: A ⊆r B, 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x), 
cand: A c∧ B, 
false: False, 
not: ¬A, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermDivide: num "/" denom, 
rat_term_ind: rat_term_ind, 
rtermVar: rtermVar(var), 
rtermConstant: "const", 
pi1: fst(t), 
rtermMultiply: left "*" right, 
pi2: snd(t), 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
derivative-rexp-function, 
roiint_wf, 
int-to-real_wf, 
rmul_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
rlog_wf, 
member_roiint_lemma, 
istype-void, 
real_wf, 
i-member_wf, 
sq_stable__rless, 
iproper-roiint, 
req_functionality, 
rmul_functionality, 
req_weakening, 
rdiv_functionality, 
req_wf, 
derivative-const-mul, 
derivative-rlog, 
rexp_wf, 
rsqrt_wf, 
rleq_weakening_rless, 
rleq_wf, 
derivative_functionality, 
rsqrt-positive, 
rmul-is-positive, 
rexp_functionality, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermVar_wf, 
istype-int, 
rsqrt-as-rexp, 
req-rdiv, 
rmul_preserves_req, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
req_transitivity, 
rmul-rinv3, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
rsqrt_squared, 
rmul-rinv
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
closedConclusion, 
independent_isectElimination, 
inrFormation_alt, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
universeIsType, 
isect_memberEquality_alt, 
voidElimination, 
setIsType, 
setElimination, 
rename, 
imageElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
applyEquality, 
inlFormation_alt, 
productIsType, 
int_eqEquality, 
approximateComputation, 
equalityTransitivity, 
equalitySymmetry
Latex:
d(rsqrt(x))/dx  =  \mlambda{}x.(r1/r(2)  *  rsqrt(x))  on  (r0,  \minfty{})
Date html generated:
2019_10_31-AM-06_11_42
Last ObjectModification:
2019_04_03-AM-00_27_02
Theory : reals_2
Home
Index