Nuprl Lemma : rlog-integral-non-zero
∀a,b:ℝ.  ((r0 < a) ⇒ (a < b) ⇒ (¬(∫ (r1/t) dt on [a, b] = r0)))
Proof
Definitions occuring in Statement : 
Riemann-integral: ∫ f[x] dx on [a, b], 
rdiv: (x/y), 
rless: x < y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rneq: x ≠ y, 
or: P ∨ Q, 
sq_stable: SqStable(P), 
top: Top, 
and: P ∧ Q, 
squash: ↓T, 
rfun: I ⟶ℝ, 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False, 
req_int_terms: t1 ≡ t2, 
itermConstant: "const", 
cand: A c∧ B, 
true: True, 
less_than': less_than'(a;b), 
less_than: a < b
Lemmas referenced : 
rless_wf, 
int-to-real_wf, 
real_wf, 
Riemann-integral-lower-bound, 
rleq_weakening_rless, 
rleq_wf, 
rdiv_wf, 
rless_transitivity2, 
i-member_wf, 
rccint_wf, 
sq_stable__rless, 
member_rccint_lemma, 
rless_transitivity1, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
req_functionality, 
rdiv_functionality, 
req_weakening, 
req_wf, 
set_wf, 
ifun_wf, 
rccint-icompact, 
rneq_functionality, 
rmul-one-both, 
rmul-rdiv-cancel, 
rmul-ac, 
rmul_comm, 
rmul_functionality, 
rmul-assoc, 
req_inversion, 
uiff_transitivity, 
rmul-rdiv-cancel2, 
rleq_functionality, 
rmul_wf, 
rmul_preserves_rleq, 
req-iff-rsub-is-0, 
real_term_value_var_lemma, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermSubtract_wf, 
real_term_polynomial, 
rless-implies-rless, 
rsub_wf, 
rmul-is-positive, 
rmul-zero-both, 
rless_functionality, 
rless-int, 
rmul_preserves_rless, 
sq_stable_rneq, 
rless_irreflexivity, 
Riemann-integral_wf, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
sqequalRule, 
dependent_functionElimination, 
inrFormation, 
independent_functionElimination, 
setElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality, 
setEquality, 
productEquality, 
intEquality, 
int_eqEquality, 
computeAll, 
independent_pairFormation, 
inlFormation, 
addLevel, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}a,b:\mBbbR{}.    ((r0  <  a)  {}\mRightarrow{}  (a  <  b)  {}\mRightarrow{}  (\mneg{}(\mint{}  (r1/t)  dt  on  [a,  b]  =  r0)))
Date html generated:
2017_10_04-PM-10_26_42
Last ObjectModification:
2017_07_28-AM-08_50_05
Theory : reals_2
Home
Index