Nuprl Lemma : MMTree-rank_wf
∀T:Type. ∀t:MMTree(T).  (MMTree-rank(t) ∈ ℕ)
Proof
Definitions occuring in Statement : 
MMTree-rank: MMTree-rank(t), 
MMTree: MMTree(T), 
nat: ℕ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
MMTree_Leaf: MMTree_Leaf(val), 
MMTree_size: MMTree_size(p), 
MMTree-rank: MMTree-rank(t), 
MMTree_Leaf?: MMTree_Leaf?(v), 
pi1: fst(t), 
MMTree_Node-forest: MMTree_Node-forest(v), 
pi2: snd(t), 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
MMTree_Node: MMTree_Node(forest), 
so_lambda: λ2x.t[x], 
less_than: a < b, 
squash: ↓T, 
so_apply: x[s], 
cand: A c∧ B, 
nat_plus: ℕ+, 
true: True, 
l_member: (x ∈ l)
Lemmas referenced : 
and_wf, 
squash_wf, 
add-is-int-iff, 
nat_plus_properties, 
nat_plus_wf, 
add_nat_plus, 
map-length, 
length_of_cons_lemma, 
cons_wf, 
imax-list_wf, 
map_wf, 
imax-list-is-nat, 
l_member_wf, 
list-subtype, 
nat_wf, 
sum-nat-le, 
sum-nat-less, 
int_term_value_add_lemma, 
itermAdd_wf, 
length_wf, 
decidable__lt, 
select_wf, 
MMTree_wf, 
list_wf, 
length_wf_nat, 
sum-nat, 
neg_assert_of_eq_atom, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
atom_subtype_base, 
subtype_base_sq, 
assert_of_eq_atom, 
eqtt_to_assert, 
bool_wf, 
eq_atom_wf, 
MMTree-ext, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
lelt_wf, 
false_wf, 
int_seg_subtype, 
decidable__equal_int, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
int_seg_properties, 
int_seg_wf, 
MMTree_size_wf, 
le_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
isect_memberFormation, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
productElimination, 
unionElimination, 
setEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
promote_hyp, 
tokenEquality, 
equalityElimination, 
instantiate, 
cumulativity, 
atomEquality, 
imageElimination, 
equalityEquality, 
addEquality, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
addLevel, 
levelHypothesis, 
substitution
Latex:
\mforall{}T:Type.  \mforall{}t:MMTree(T).    (MMTree-rank(t)  \mmember{}  \mBbbN{})
 Date html generated: 
2016_05_16-AM-08_55_48
 Last ObjectModification: 
2016_01_17-AM-09_43_23
Theory : C-semantics
Home
Index