Nuprl Lemma : AF-path-barred
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (AFx,y:T.R[x;y] 
⇒ (∀alpha:{f:ℕ ⟶ (T?)| ∀x:ℕ. (AF-spread-law(x,y.R[x;y]) x f (f x))} . (↓∃m:ℕ. (AFbar() m alpha))))
Proof
Definitions occuring in Statement : 
AFbar: AFbar()
, 
AF-spread-law: AF-spread-law(x,y.R[x; y])
, 
almost-full: AFx,y:T.R[x; y]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
AFbar: AFbar()
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
subtract: n - m
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
AF-spread-law: AF-spread-law(x,y.R[x; y])
, 
almost-full: AFx,y:T.R[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
isl: isl(x)
, 
btrue: tt
, 
lelt: i ≤ j < k
, 
outl: outl(x)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bfalse: ff
, 
sq_stable: SqStable(P)
Lemmas referenced : 
AF-spread-law_wf, 
decidable__assert, 
isr_wf, 
unit_wf2, 
nat_wf, 
false_wf, 
le_wf, 
less_than_wf, 
assert_wf, 
subtract_wf, 
decidable__le, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
outl_wf, 
not-isr-assert-isl, 
equal_wf, 
set_wf, 
all_wf, 
subtype_rel_function, 
int_seg_wf, 
int_seg_subtype_nat, 
subtype_rel_self, 
almost-full_wf, 
decidable__exists_int_seg, 
decidable__and2, 
decidable__lt, 
isl_wf, 
not-isl-assert-isr, 
and_wf, 
subtype_base_sq, 
int_subtype_base, 
sq_stable__le, 
not-lt-2, 
add-mul-special, 
zero-mul, 
le-add-cancel2
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
setElimination, 
rename, 
sqequalRule, 
dependent_functionElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
unionElimination, 
dependent_pairFormation, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
productEquality, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
addEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
intEquality, 
promote_hyp, 
unionEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
functionEquality, 
universeEquality, 
instantiate, 
hyp_replacement, 
applyLambdaEquality, 
addLevel, 
levelHypothesis, 
inlEquality, 
multiplyEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (AFx,y:T.R[x;y]
    {}\mRightarrow{}  (\mforall{}alpha:\{f:\mBbbN{}  {}\mrightarrow{}  (T?)|  \mforall{}x:\mBbbN{}.  (AF-spread-law(x,y.R[x;y])  x  f  (f  x))\} 
                (\mdownarrow{}\mexists{}m:\mBbbN{}.  (AFbar()  m  alpha))))
Date html generated:
2019_06_20-AM-11_29_23
Last ObjectModification:
2018_08_21-PM-01_52_50
Theory : bar-induction
Home
Index