Nuprl Lemma : AF-path-barred

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (AFx,y:T.R[x;y]  (∀alpha:{f:ℕ ⟶ (T?)| ∀x:ℕ(AF-spread-law(x,y.R[x;y]) (f x))} (↓∃m:ℕ(AFbar() alpha))))


Proof




Definitions occuring in Statement :  AFbar: AFbar() AF-spread-law: AF-spread-law(x,y.R[x; y]) almost-full: AFx,y:T.R[x; y] nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q unit: Unit set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] AFbar: AFbar() nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: decidable: Dec(P) or: P ∨ Q exists: x:A. B[x] cand: c∧ B less_than: a < b squash: T true: True subtract: m iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top AF-spread-law: AF-spread-law(x,y.R[x; y]) almost-full: AFx,y:T.R[x; y] so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] int_seg: {i..j-} assert: b ifthenelse: if then else fi  isl: isl(x) btrue: tt lelt: i ≤ j < k outl: outl(x) sq_type: SQType(T) guard: {T} bfalse: ff sq_stable: SqStable(P)
Lemmas referenced :  AF-spread-law_wf decidable__assert isr_wf unit_wf2 nat_wf false_wf le_wf less_than_wf assert_wf subtract_wf decidable__le not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel outl_wf not-isr-assert-isl equal_wf set_wf all_wf subtype_rel_function int_seg_wf int_seg_subtype_nat subtype_rel_self almost-full_wf decidable__exists_int_seg decidable__and2 decidable__lt isl_wf not-isl-assert-isr and_wf subtype_base_sq int_subtype_base sq_stable__le not-lt-2 add-mul-special zero-mul le-add-cancel2
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation setElimination rename sqequalRule dependent_functionElimination cumulativity applyEquality functionExtensionality dependent_set_memberEquality natural_numberEquality independent_pairFormation unionElimination dependent_pairFormation because_Cache imageMemberEquality baseClosed productEquality voidElimination productElimination independent_functionElimination independent_isectElimination addEquality lambdaEquality isect_memberEquality voidEquality minusEquality intEquality promote_hyp unionEquality equalityTransitivity equalitySymmetry imageElimination functionEquality universeEquality instantiate hyp_replacement applyLambdaEquality addLevel levelHypothesis inlEquality multiplyEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (AFx,y:T.R[x;y]
    {}\mRightarrow{}  (\mforall{}alpha:\{f:\mBbbN{}  {}\mrightarrow{}  (T?)|  \mforall{}x:\mBbbN{}.  (AF-spread-law(x,y.R[x;y])  x  f  (f  x))\} 
                (\mdownarrow{}\mexists{}m:\mBbbN{}.  (AFbar()  m  alpha))))



Date html generated: 2019_06_20-AM-11_29_23
Last ObjectModification: 2018_08_21-PM-01_52_50

Theory : bar-induction


Home Index