Nuprl Lemma : seq-normalize-append

[n,m:ℕ]. ∀[s1,s2:Top].  (seq-normalize(n m;seq-append(n;m;s1;s2)) seq-append(n;m;s1;s2))


Proof




Definitions occuring in Statement :  seq-normalize: seq-normalize(n;s) seq-append: seq-append(n;m;s1;s2) nat: uall: [x:A]. B[x] top: Top add: m sqequal: t
Definitions unfolded in proof :  seq-append: seq-append(n;m;s1;s2) seq-normalize: seq-normalize(n;s) has-value: (a)↓ member: t ∈ T subtype_rel: A ⊆B nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a and: P ∧ Q all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) ge: i ≥  subtract: m nat_plus: + le: A ≤ B
Lemmas referenced :  set_subtype_base le_wf int_subtype_base has-value_wf_base is-exception_wf top_wf nat_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot bottom-sqle decidable__lt exception-not-value value-type-has-value int-value-type add-commutes add_functionality_wrt_le subtract_wf le_reflexive minus-one-mul zero-add one-mul add-mul-special add-associates two-mul mul-distributes-right zero-mul less-iff-le add-zero not-lt-2 minus-one-mul-top add-swap omega-shadow mul-distributes minus-add mul-associates mul-swap nat_properties set-value-type
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut thin sqequalSqle divergentSqle callbyvalueLess sqequalHypSubstitution hypothesis baseApply closedConclusion baseClosed hypothesisEquality applyEquality introduction extract_by_obid isectElimination intEquality lambdaEquality natural_numberEquality independent_isectElimination productElimination lessExceptionCases axiomSqleEquality exceptionSqequal sqleReflexivity because_Cache isect_memberFormation sqequalAxiom isect_memberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry lessCases independent_pairFormation voidElimination voidEquality imageMemberEquality imageElimination independent_functionElimination setElimination rename dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity impliesFunctionality addEquality multiplyEquality minusEquality dependent_set_memberEquality

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[s1,s2:Top].    (seq-normalize(n  +  m;seq-append(n;m;s1;s2))  \msim{}  seq-append(n;m;s1;s2))



Date html generated: 2017_04_14-AM-07_26_47
Last ObjectModification: 2017_02_27-PM-02_56_21

Theory : bar-induction


Home Index