Nuprl Lemma : seq-normalize-append
∀[n,m:ℕ]. ∀[s1,s2:Top]. (seq-normalize(n + m;seq-append(n;m;s1;s2)) ~ seq-append(n;m;s1;s2))
Proof
Definitions occuring in Statement :
seq-normalize: seq-normalize(n;s)
,
seq-append: seq-append(n;m;s1;s2)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
top: Top
,
add: n + m
,
sqequal: s ~ t
Definitions unfolded in proof :
seq-append: seq-append(n;m;s1;s2)
,
seq-normalize: seq-normalize(n;s)
,
has-value: (a)↓
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
less_than: a < b
,
less_than': less_than'(a;b)
,
top: Top
,
true: True
,
squash: ↓T
,
not: ¬A
,
false: False
,
prop: ℙ
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
ge: i ≥ j
,
subtract: n - m
,
nat_plus: ℕ+
,
le: A ≤ B
Lemmas referenced :
set_subtype_base,
le_wf,
int_subtype_base,
has-value_wf_base,
is-exception_wf,
top_wf,
nat_wf,
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
less_than_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
iff_transitivity,
assert_wf,
bnot_wf,
not_wf,
iff_weakening_uiff,
assert_of_bnot,
bottom-sqle,
decidable__lt,
exception-not-value,
value-type-has-value,
int-value-type,
add-commutes,
add_functionality_wrt_le,
subtract_wf,
le_reflexive,
minus-one-mul,
zero-add,
one-mul,
add-mul-special,
add-associates,
two-mul,
mul-distributes-right,
zero-mul,
less-iff-le,
add-zero,
not-lt-2,
minus-one-mul-top,
add-swap,
omega-shadow,
mul-distributes,
minus-add,
mul-associates,
mul-swap,
nat_properties,
set-value-type
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
thin,
sqequalSqle,
divergentSqle,
callbyvalueLess,
sqequalHypSubstitution,
hypothesis,
baseApply,
closedConclusion,
baseClosed,
hypothesisEquality,
applyEquality,
introduction,
extract_by_obid,
isectElimination,
intEquality,
lambdaEquality,
natural_numberEquality,
independent_isectElimination,
productElimination,
lessExceptionCases,
axiomSqleEquality,
exceptionSqequal,
sqleReflexivity,
because_Cache,
isect_memberFormation,
sqequalAxiom,
isect_memberEquality,
lambdaFormation,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
lessCases,
independent_pairFormation,
voidElimination,
voidEquality,
imageMemberEquality,
imageElimination,
independent_functionElimination,
setElimination,
rename,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
impliesFunctionality,
addEquality,
multiplyEquality,
minusEquality,
dependent_set_memberEquality
Latex:
\mforall{}[n,m:\mBbbN{}]. \mforall{}[s1,s2:Top]. (seq-normalize(n + m;seq-append(n;m;s1;s2)) \msim{} seq-append(n;m;s1;s2))
Date html generated:
2017_04_14-AM-07_26_47
Last ObjectModification:
2017_02_27-PM-02_56_21
Theory : bar-induction
Home
Index