Nuprl Lemma : corec-rel_wf

[F:Type ⟶ Type]
  ∀[G:⋂T:Type. ((T ⟶ T ⟶ ℙ) ⟶ F[T] ⟶ F[T] ⟶ ℙ)]. (corec-rel(G) ∈ corec(T.F[T]) ⟶ corec(T.F[T]) ⟶ ℙ
  supposing ContinuousMonotone(T.F[T])


Proof




Definitions occuring in Statement :  corec-rel: corec-rel(G) corec: corec(T.F[T]) continuous-monotone: ContinuousMonotone(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A top: Top lt_int: i <j subtract: m eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B true: True squash: T nequal: a ≠ b ∈  sq_type: SQType(T) assert: b bfalse: ff compose: g so_apply: x[s] so_lambda: λ2x.t[x] corec-rel: corec-rel(G) corec: corec(T.F[T])
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf fun_exp_unroll false_wf le_wf primrec-unroll true_wf top_wf decidable__le subtract_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_weakening2 subtype_base_sq bool_subtype_base equal_wf eq_int_eq_false le_weakening subtype_rel_self iff_weakening_equal iff_imp_equal_bool lt_int_wf le-add-cancel2 assert_of_lt_int assert_wf iff_wf primrec_wf not-le-2 int_seg_wf nat_wf continuous-monotone_wf all_wf corec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_pairFormation isect_memberEquality voidEquality because_Cache unionElimination productElimination addEquality applyEquality intEquality minusEquality instantiate imageElimination imageMemberEquality baseClosed universeEquality addLevel impliesFunctionality functionExtensionality cumulativity isectEquality functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    \mforall{}[G:\mcap{}T:Type.  ((T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  \mBbbP{})]
        (corec-rel(G)  \mmember{}  corec(T.F[T])  {}\mrightarrow{}  corec(T.F[T])  {}\mrightarrow{}  \mBbbP{}) 
    supposing  ContinuousMonotone(T.F[T])



Date html generated: 2018_07_25-PM-01_30_31
Last ObjectModification: 2018_05_31-PM-02_00_17

Theory : co-recursion


Home Index