Nuprl Lemma : unbounded-decidable-nset-infinite

K:Type. ((K ⊆r ℕ (∀l:ℕ((l ∈ K) ∨ (l ∈ K))))  (∀B:ℕ. ∃k:K. B < k)  (∃f:K ⟶ ℕSurj(K;ℕ;f)))


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) nat: less_than: a < b subtype_rel: A ⊆B all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  upto: upto(n) uiff: uiff(P;Q) nat_plus: + select: L[n] l_member: (x ∈ l) cons: [a b] surject: Surj(A;B;f) respects-equality: respects-equality(S;T) sq_type: SQType(T) cand: c∧ B squash: T less_than: a < b decidable: Dec(P) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  istype: istype(T) prop: less_than': less_than'(a;b) le: A ≤ B guard: {T} uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] nat: false: False not: ¬A bfalse: ff rev_implies:  Q true: True and: P ∧ Q iff: ⇐⇒ Q btrue: tt ifthenelse: if then else fi  assert: b isl: isl(x) or: P ∨ Q subtype_rel: A ⊆B member: t ∈ T exists: x:A. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  btrue_neq_bfalse member-implies-null-eq-bfalse null_nil_lemma no_repeats-subtype no_repeats_from-upto no_repeats_filter from-upto-member-nat member_filter_2 subtype_rel_sets_simple from-upto_wf length-one-iff subtract-add-cancel length-append filter_append_sq zero-le-nat from-upto-split list_subtype_base length_wf cons_wf false_wf add-is-int-iff nat_plus_properties add_nat_plus length_of_cons_lemma product_subtype_list nil_wf length_of_nil_lemma list-cases member_filter member_upto exists_wf decidable__equal_int int_formula_prop_eq_lemma intformeq_wf subtype-respects-equality subtype_base_sq le_witness_for_triv decidable__lt int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf decidable__le equal-wf-base less_than_wf primrec-wf2 subtract_wf istype-le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf intformand_wf full-omega-unsat nat_properties istype-universe subtype_rel_wf istype-less_than surject_wf istype-false int_seg_subtype_nat int_seg_wf subtype_rel_list l_member_wf bool_wf subtype_rel_dep_function subtype_rel_transitivity upto_wf filter_wf5 length_wf_nat istype-assert istype-void int_subtype_base istype-int le_wf set_subtype_base istype-true istype-nat bfalse_wf btrue_wf nat_wf
Rules used in proof :  Error :isectIsTypeImplies,  axiomEquality Error :isect_memberFormation_alt,  pointwiseFunctionality applyLambdaEquality hypothesis_subsumption minusEquality baseClosed closedConclusion baseApply cumulativity promote_hyp imageElimination Error :dependent_set_memberEquality_alt,  productEquality functionEquality addEquality Error :isect_memberEquality_alt,  int_eqEquality approximateComputation universeEquality instantiate Error :unionIsType,  Error :setIsType,  setElimination setEquality productElimination Error :productIsType,  Error :functionIsType,  sqequalBase independent_isectElimination intEquality isectElimination Error :universeIsType,  voidElimination natural_numberEquality independent_pairFormation because_Cache independent_functionElimination dependent_functionElimination Error :equalityIstype,  unionElimination extract_by_obid introduction equalitySymmetry equalityTransitivity Error :inhabitedIsType,  thin hypothesis hypothesisEquality sqequalHypSubstitution functionExtensionality sqequalRule applyEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  rename cut Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}K:Type
    ((K  \msubseteq{}r  \mBbbN{})  {}\mRightarrow{}  (\mforall{}l:\mBbbN{}.  ((l  \mmember{}  K)  \mvee{}  (\mneg{}(l  \mmember{}  K))))  {}\mRightarrow{}  (\mforall{}B:\mBbbN{}.  \mexists{}k:K.  B  <  k)  {}\mRightarrow{}  (\mexists{}f:K  {}\mrightarrow{}  \mBbbN{}.  Surj(K;\mBbbN{};f)))



Date html generated: 2019_06_20-PM-03_02_26
Last ObjectModification: 2019_06_13-PM-07_17_10

Theory : continuity


Home Index