Nuprl Lemma : weak-continuity-principle-nat+-int-nat

F:(ℕ+ ⟶ ℤ) ⟶ ℕ. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤg ∈ (ℕ+n ⟶ ℤ)} .  ∃n:ℕ+((F f) (F (G n)) ∈ ℕ)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  less_than: a < b rev_uimplies: rev_uimplies(P;Q) guard: {T} squash: T ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] so_lambda: λ2x.t[x] true: True less_than': less_than'(a;b) subtype_rel: A ⊆B subtract: m uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q le: A ≤ B prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat_plus: + uall: [x:A]. B[x] nat: member: t ∈ T all: x:A. B[x]
Lemmas referenced :  mu-property int_term_value_add_lemma itermAdd_wf add_nat_plus assert_wf assert_of_eq_int eq_int_wf mu_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int subtract-add-cancel lelt_wf add-subtract-cancel add-member-int_seg2 set_wf nat_properties add-swap int_seg_subtype_nat all_wf exists_wf squash-from-quotient subtype_rel_self int_seg_subtype_nat_plus subtype_rel_dep_function int_seg_wf equal_wf nat_plus_wf less_than_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 false_wf decidable__lt le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties subtract_wf nat_wf weak-continuity-nat-int
Rules used in proof :  hyp_replacement applyLambdaEquality equalitySymmetry equalityTransitivity baseClosed imageMemberEquality imageElimination setEquality minusEquality productElimination addEquality independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination unionElimination natural_numberEquality rename setElimination isectElimination dependent_set_memberEquality hypothesis intEquality because_Cache functionEquality hypothesisEquality functionExtensionality applyEquality lambdaEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}F:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\}  .    \mexists{}n:\mBbbN{}\msupplus{}.  ((F  f)  =  (F  (G  n)))



Date html generated: 2017_09_29-PM-06_06_24
Last ObjectModification: 2017_09_09-PM-07_33_12

Theory : continuity


Home Index