Nuprl Lemma : weak-continuity-principle-nat+-int-nat
∀F:(ℕ+ ⟶ ℤ) ⟶ ℕ. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)} .  ∃n:ℕ+. ((F f) = (F (G n)) ∈ ℕ)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
less_than: a < b, 
rev_uimplies: rev_uimplies(P;Q), 
guard: {T}, 
squash: ↓T, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
true: True, 
less_than': less_than'(a;b), 
subtype_rel: A ⊆r B, 
subtract: n - m, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
le: A ≤ B, 
prop: ℙ, 
and: P ∧ Q, 
top: Top, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
implies: P ⇒ Q, 
not: ¬A, 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
mu-property, 
int_term_value_add_lemma, 
itermAdd_wf, 
add_nat_plus, 
assert_wf, 
assert_of_eq_int, 
eq_int_wf, 
mu_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
subtract-add-cancel, 
lelt_wf, 
add-subtract-cancel, 
add-member-int_seg2, 
set_wf, 
nat_properties, 
add-swap, 
int_seg_subtype_nat, 
all_wf, 
exists_wf, 
squash-from-quotient, 
subtype_rel_self, 
int_seg_subtype_nat_plus, 
subtype_rel_dep_function, 
int_seg_wf, 
equal_wf, 
nat_plus_wf, 
less_than_wf, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
subtract_wf, 
nat_wf, 
weak-continuity-nat-int
Rules used in proof : 
hyp_replacement, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
setEquality, 
minusEquality, 
productElimination, 
addEquality, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
rename, 
setElimination, 
isectElimination, 
dependent_set_memberEquality, 
hypothesis, 
intEquality, 
because_Cache, 
functionEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}F:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\}  .    \mexists{}n:\mBbbN{}\msupplus{}.  ((F  f)  =  (F  (G  n)))
Date html generated:
2017_09_29-PM-06_06_24
Last ObjectModification:
2017_09_09-PM-07_33_12
Theory : continuity
Home
Index