Nuprl Lemma : fset-size-add

[T:Type]
  ∀[eq:EqDecider(T)]. ∀[s:fset(T)]. ∀[x:T].  ||fset-add(eq;x;s)|| (||s|| 1) ∈ ℤ supposing ¬x ∈ 
  supposing valueall-type(T)


Proof




Definitions occuring in Statement :  fset-size: ||s|| fset-add: fset-add(eq;x;s) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] not: ¬A add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fset: fset(T) all: x:A. B[x] prop: quotient: x,y:A//B[x; y] and: P ∧ Q squash: T subtype_rel: A ⊆B true: True nat: fset-add: fset-add(eq;x;s) fset-size: ||s|| rev_implies:  Q iff: ⇐⇒ Q implies:  Q not: ¬A fset-member: a ∈ s guard: {T} sq_type: SQType(T) top: Top deq: EqDecider(T) eqof: eqof(d) uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] false: False or: P ∨ Q fset-union: x ⋃ y fset-singleton: {x}
Lemmas referenced :  list_wf set-equal_wf set-equal-reflex equal-wf-base equal_wf squash_wf true_wf fset-add_wf subtype_rel_self fset_wf fset-size_wf not_wf fset-member_wf deq_wf valueall-type_wf l_member_wf assert-deq-member int_subtype_base subtype_base_sq length_of_cons_lemma remove_repeats_cons_lemma length_wf iff_weakening_equal bnot_wf remove-repeats-filter remove-repeats_wf filter_trivial safe-assert-deq assert_of_bnot iff_weakening_uiff eqof_wf iff_transitivity assert_wf l_all_iff and_wf iff_wf all_wf or_wf false_wf nil_member cons_member member-union nil_wf cons_wf l-union_wf length-remove-repeats or_false_r
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality hypothesis promote_hyp Error :lambdaFormation_alt,  Error :inhabitedIsType,  Error :universeIsType,  equalityTransitivity equalitySymmetry pointwiseFunctionality sqequalRule pertypeElimination productElimination productEquality dependent_functionElimination applyEquality Error :lambdaEquality_alt,  imageElimination universeEquality intEquality because_Cache natural_numberEquality imageMemberEquality baseClosed addEquality setElimination rename instantiate Error :isect_memberEquality_alt,  axiomEquality cumulativity independent_functionElimination lambdaFormation independent_isectElimination voidEquality voidElimination isect_memberEquality lambdaEquality impliesFunctionality independent_pairFormation addLevel setEquality hyp_replacement dependent_set_memberEquality applyLambdaEquality orFunctionality allFunctionality levelHypothesis

Latex:
\mforall{}[T:Type]
    \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].  \mforall{}[x:T].    ||fset-add(eq;x;s)||  =  (||s||  +  1)  supposing  \mneg{}x  \mmember{}  s 
    supposing  valueall-type(T)



Date html generated: 2019_06_20-PM-01_59_53
Last ObjectModification: 2018_09_30-PM-02_47_20

Theory : finite!sets


Home Index