Nuprl Lemma : bijection_restriction

k:ℕ. ∀f:ℕk ⟶ ℕk.
  Bij(ℕk;ℕk;f)  {(f ∈ ℕ1 ⟶ ℕ1) ∧ Bij(ℕ1;ℕ1;f)} supposing (f (k 1)) (k 1) ∈ ℤ supposing 0 < k


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q guard: {T} and: P ∧ Q cand: c∧ B prop: int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True less_than: a < b exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) biject: Bij(A;B;f) inject: Inj(A;B;f) squash: T surject: Surj(A;B;f)
Lemmas referenced :  member-less_than equal_wf int_seg_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top nat_wf minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt lelt_wf biject_wf less_than_wf decidable__int_equal le-add-cancel2 set_subtype_base int_subtype_base two-mul mul-distributes-right one-mul subtype_base_sq not-equal-2 int_seg_properties nat_properties int_seg_subtype le_antisymmetry_iff less_than_transitivity1 le_weakening less_than_irreflexivity equal_functionality_wrt_subtype_rel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry independent_pairFormation intEquality applyEquality functionExtensionality because_Cache dependent_set_memberEquality dependent_functionElimination unionElimination voidElimination productElimination independent_functionElimination addEquality sqequalRule lambdaEquality isect_memberEquality voidEquality minusEquality functionEquality dependent_pairFormation sqequalIntensionalEquality promote_hyp multiplyEquality instantiate cumulativity applyLambdaEquality imageMemberEquality baseClosed

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}k.
    Bij(\mBbbN{}k;\mBbbN{}k;f)  {}\mRightarrow{}  \{(f  \mmember{}  \mBbbN{}k  -  1  {}\mrightarrow{}  \mBbbN{}k  -  1)  \mwedge{}  Bij(\mBbbN{}k  -  1;\mBbbN{}k  -  1;f)\}  supposing  (f  (k  -  1))  =  (k  -  1) 
    supposing  0  <  k



Date html generated: 2017_04_14-AM-07_34_14
Last ObjectModification: 2017_02_27-PM-03_08_51

Theory : fun_1


Home Index