Nuprl Lemma : test-mutual-corec-size_wf

[i:ℕ2]. ∀[x:test-mutual-corec() i].  (test-mutual-corec-size(i;x) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  test-mutual-corec-size: test-mutual-corec-size(i;x) test-mutual-corec: test-mutual-corec() partial: partial(T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T test-mutual-corec-size: test-mutual-corec-size(i;x) test-mutual-corec: test-mutual-corec() nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_lambda: λ2x.t[x] int_seg: {i..j-} all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a lelt: i ≤ j < k less_than: a < b squash: T true: True bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtype_rel: A ⊆B so_apply: x[s] k-monotone: k-Monotone(T.F[T]) k-subtype: A ⊆ B decidable: Dec(P) eq_int: (i =z j) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) m-corec: m-corec(T.F[T];i)
Lemmas referenced :  fix_wf_mutual-corec-partial-nat false_wf le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int unit_wf2 int_seg_wf lelt_wf list_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__equal_int int_subtype_base int_seg_properties subtype_rel_union subtype_rel_product subtype_rel_list int_seg_subtype int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf k-subtype_wf strong-continuous-union continuous-constant strong-continuous-product continuous-id strong-continuous-list subtype_rel_weakening nat_wf nat-partial-nat add-wf-partial-nat sum-partial-nat length_wf_nat select_wf length_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt partial_wf test-mutual-corec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule sqequalHypSubstitution introduction extract_by_obid isectElimination thin dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis hypothesisEquality lambdaEquality setElimination rename because_Cache unionElimination equalityElimination productElimination independent_isectElimination unionEquality productEquality applyEquality functionExtensionality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination functionEquality universeEquality intEquality hypothesis_subsumption addEquality approximateComputation int_eqEquality isect_memberEquality voidEquality axiomEquality isectEquality spreadEquality imageElimination

Latex:
\mforall{}[i:\mBbbN{}2].  \mforall{}[x:test-mutual-corec()  i].    (test-mutual-corec-size(i;x)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2019_06_20-PM-01_19_11
Last ObjectModification: 2018_08_21-PM-01_55_08

Theory : int_2


Home Index