Nuprl Lemma : decidable__equal_function

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀i,j:ℤ. ∀f,g:{i..j-} ⟶ T.  Dec(f g ∈ ({i..j-} ⟶ T))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] nat: so_apply: x[s] false: False not: ¬A or: P ∨ Q decidable: Dec(P) true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + uimplies: supposing a uiff: uiff(P;Q) subtype_rel: A ⊆B top: Top subtract: m le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) guard: {T} sq_stable: SqStable(P)
Lemmas referenced :  decidable_wf equal_wf istype-universe istype-le subtract_wf int_seg_wf istype-int istype-less_than primrec-wf2 le_wf istype-nat istype-void le-add-cancel mul-distributes mul-associates omega-shadow add-zero minus-zero zero-add zero-mul mul-distributes-right two-mul add-mul-special add-swap one-mul add-associates minus-one-mul-top le_reflexive add_functionality_wrt_le less-iff-le int_subtype_base add-is-int-iff add-commutes minus-one-mul int_seg_properties decidable__le istype-false not-le-2 condition-implies-le minus-add minus-minus le-add-cancel-alt subtype_rel_function int_seg_subtype le-add-cancel2 subtype_rel_self decidable__lt not-lt-2 mul-swap mul-commutes decidable__equal_int subtype_base_sq not-equal-2 iff_weakening_equal true_wf squash_wf equal_functionality_wrt_subtype_rel2 sq_stable__le subtract_nat_wf le_weakening2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut sqequalRule Error :functionIsType,  Error :universeIsType,  hypothesisEquality because_Cache introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis instantiate universeEquality rename setElimination Error :inhabitedIsType,  natural_numberEquality functionEquality Error :setIsType,  Error :lambdaEquality_alt,  intEquality Error :equalityIstype,  Error :functionExtensionality_alt,  Error :inlFormation_alt,  independent_functionElimination imageMemberEquality independent_pairFormation Error :dependent_set_memberEquality_alt,  equalitySymmetry equalityTransitivity multiplyEquality addEquality dependent_functionElimination independent_isectElimination applyEquality baseClosed closedConclusion baseApply voidElimination Error :isect_memberEquality_alt,  productElimination unionElimination minusEquality Error :productIsType,  cumulativity applyLambdaEquality imageElimination Error :inrFormation_alt

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}i,j:\mBbbZ{}.  \mforall{}f,g:\{i..j\msupminus{}\}  {}\mrightarrow{}  T.    Dec(f  =  g)))



Date html generated: 2019_06_20-PM-00_42_04
Last ObjectModification: 2019_01_02-PM-00_24_16

Theory : list_0


Home Index