Nuprl Lemma : iseg_filter2
∀[T:Type]
  ∀L_1,L_2:T List. ∀P:{x:T| (x ∈ L_1)}  ⟶ 𝔹.
    (L_2 ≤ filter(P;L_1) 
⇒ (∃L_3:T List. (L_3 ≤ L_1 ∧ (L_2 = filter(P;L_3) ∈ (T List)))))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
l_member: (x ∈ l)
, 
filter: filter(P;l)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
istype: istype(T)
, 
exists: ∃x:A. B[x]
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
respects-equality: respects-equality(S;T)
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
squash: ↓T
, 
true: True
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
l_member_wf, 
bool_wf, 
iseg_wf, 
filter_wf5, 
exists_wf, 
equal_wf, 
subtype_rel_dep_function, 
subtype_rel_sets_simple, 
iseg_member, 
nil_wf, 
cons_wf, 
list-subtype, 
subtype_rel_list_set, 
respects-equality-list, 
subtype-respects-equality, 
istype-universe, 
iseg_weakening, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
filter_nil_lemma, 
istype-void, 
iseg_nil, 
assert_of_null, 
equal-wf-T-base, 
decidable__assert, 
null_wf, 
nil_iseg, 
filter_cons_lemma, 
cons_member, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
cons_iseg_not_null, 
cons_iseg, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
assert_elim, 
bnot_wf, 
bfalse_wf, 
bool_cases_sqequal, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
hypothesis, 
functionEquality, 
setEquality, 
because_Cache, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
setElimination, 
rename, 
productEquality, 
applyEquality, 
Error :setIsType, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :productIsType, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
Error :dependent_set_memberEquality_alt, 
instantiate, 
universeEquality, 
Error :dependent_pairFormation_alt, 
independent_pairFormation, 
voidElimination, 
Error :isect_memberEquality_alt, 
productElimination, 
hyp_replacement, 
applyLambdaEquality, 
baseClosed, 
unionElimination, 
sqequalBase, 
Error :inlFormation_alt, 
cumulativity, 
Error :inrFormation_alt, 
equalityElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
Error :equalityIsType2, 
baseApply, 
closedConclusion, 
Error :equalityIsType4, 
Error :equalityIsType1, 
promote_hyp
Latex:
\mforall{}[T:Type]
    \mforall{}L$_{1}$,L$_{2}$:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L$_{1\mbackslash{}f\000Cf7d$)\}    {}\mrightarrow{}  \mBbbB{}.
        (L$_{2}$  \mleq{}  filter(P;L$_{1}$)  {}\mRightarrow{}  (\mexists{}L$_{3}\000C$:T  List.  (L$_{3}$  \mleq{}  L$_{1}$  \mwedge{}  (L$_{2}\mbackslash{}f\000Cf24  =  filter(P;L$_{3}$)))))
Date html generated:
2019_06_20-PM-01_29_38
Last ObjectModification:
2018_11_23-PM-04_32_33
Theory : list_1
Home
Index