Nuprl Lemma : iseg_filter2

[T:Type]
  ∀L_1,L_2:T List. ∀P:{x:T| (x ∈ L_1)}  ⟶ 𝔹.
    (L_2 ≤ filter(P;L_1)  (∃L_3:T List. (L_3 ≤ L_1 ∧ (L_2 filter(P;L_3) ∈ (T List)))))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 l_member: (x ∈ l) filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: all: x:A. B[x] implies:  Q and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a istype: istype(T) exists: x:A. B[x] filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind nil: [] it: guard: {T} respects-equality: respects-equality(S;T) cand: c∧ B not: ¬A false: False top: Top iff: ⇐⇒ Q uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q rev_implies:  Q sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt bfalse: ff bool: 𝔹 unit: Unit squash: T true: True bnot: ¬bb assert: b
Lemmas referenced :  list_induction all_wf list_wf l_member_wf bool_wf iseg_wf filter_wf5 exists_wf equal_wf subtype_rel_dep_function subtype_rel_sets_simple iseg_member nil_wf cons_wf list-subtype subtype_rel_list_set respects-equality-list subtype-respects-equality istype-universe iseg_weakening null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse filter_nil_lemma istype-void iseg_nil assert_of_null equal-wf-T-base decidable__assert null_wf nil_iseg filter_cons_lemma cons_member bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot cons_iseg_not_null cons_iseg squash_wf true_wf subtype_rel_self iff_weakening_equal assert_elim bnot_wf bfalse_wf bool_cases_sqequal assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  hypothesis functionEquality setEquality because_Cache Error :lambdaFormation_alt,  Error :universeIsType,  setElimination rename productEquality applyEquality Error :setIsType,  independent_isectElimination dependent_functionElimination independent_functionElimination Error :inhabitedIsType,  Error :functionIsType,  Error :productIsType,  Error :equalityIstype,  equalityTransitivity equalitySymmetry functionExtensionality Error :dependent_set_memberEquality_alt,  instantiate universeEquality Error :dependent_pairFormation_alt,  independent_pairFormation voidElimination Error :isect_memberEquality_alt,  productElimination hyp_replacement applyLambdaEquality baseClosed unionElimination sqequalBase Error :inlFormation_alt,  cumulativity Error :inrFormation_alt,  equalityElimination imageElimination natural_numberEquality imageMemberEquality Error :equalityIsType2,  baseApply closedConclusion Error :equalityIsType4,  Error :equalityIsType1,  promote_hyp

Latex:
\mforall{}[T:Type]
    \mforall{}L$_{1}$,L$_{2}$:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L$_{1\mbackslash{}f\000Cf7d$)\}    {}\mrightarrow{}  \mBbbB{}.
        (L$_{2}$  \mleq{}  filter(P;L$_{1}$)  {}\mRightarrow{}  (\mexists{}L$_{3}\000C$:T  List.  (L$_{3}$  \mleq{}  L$_{1}$  \mwedge{}  (L$_{2}\mbackslash{}f\000Cf24  =  filter(P;L$_{3}$)))))



Date html generated: 2019_06_20-PM-01_29_38
Last ObjectModification: 2018_11_23-PM-04_32_33

Theory : list_1


Home Index