Nuprl Lemma : sub-spread-transitive

[Pos:Type]. ∀[Mv:Pos ⟶ Type].  Trans(Spread(Pos;a.Mv[a]);s',s.s' ≤ s)


Proof




Definitions occuring in Statement :  sub-spread: s' ≤ s Spread: Spread(Pos;a.Mv[a]) trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] implies:  Q sub-spread: s' ≤ s exists: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) true: True squash: T lelt: i ≤ j < k guard: {T} bfalse: ff subtype_rel: A ⊆B sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q le: A ≤ B subgame: subgame(g;p;n) eq_int: (i =z j) subtract: m nequal: a ≠ b ∈  isl: isl(x)
Lemmas referenced :  sub-spread_wf istype-universe Spread_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf lt_int_wf eqtt_to_assert assert_of_lt_int istype-top int_seg_properties istype-less_than eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf subtract_wf itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma decidable__lt int_seg_wf subgame_wf MoveChoice_wf ge_wf istype-false unit_wf2 subtract-1-ge-0 equal_wf squash_wf true_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma set_subtype_base lelt_wf eq_int_wf bnot_wf not_wf equal-wf-base istype-assert bool_cases assert_of_eq_int iff_transitivity assert_of_bnot neg_assert_of_eq_int subtype_rel_weakening spread-ext add-member-int_seg2 btrue_neq_bfalse btrue_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalHypSubstitution productElimination thin Error :universeIsType,  cut introduction extract_by_obid isectElimination hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality hypothesis Error :inhabitedIsType,  Error :functionIsType,  universeEquality Error :dependent_pairFormation_alt,  Error :dependent_set_memberEquality_alt,  addEquality setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation because_Cache equalityElimination lessCases axiomSqEquality imageMemberEquality baseClosed imageElimination Error :productIsType,  equalityTransitivity equalitySymmetry Error :equalityIsType2,  baseApply closedConclusion promote_hyp instantiate cumulativity Error :equalityIsType1,  intWeakElimination axiomEquality Error :functionIsTypeImplies,  Error :inlEquality_alt,  applyLambdaEquality hyp_replacement unionEquality Error :functionExtensionality_alt,  intEquality Error :equalityIsType4,  functionEquality productEquality minusEquality Error :inrEquality_alt

Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].    Trans(Spread(Pos;a.Mv[a]);s',s.s'  \mleq{}  s)



Date html generated: 2019_06_20-PM-02_02_51
Last ObjectModification: 2018_10_12-AM-10_42_59

Theory : spread


Home Index