Nuprl Lemma : sub-spread-transitive
∀[Pos:Type]. ∀[Mv:Pos ⟶ Type].  Trans(Spread(Pos;a.Mv[a]);s',s.s' ≤ s)
Proof
Definitions occuring in Statement : 
sub-spread: s' ≤ s, 
Spread: Spread(Pos;a.Mv[a]), 
trans: Trans(T;x,y.E[x; y]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
trans: Trans(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sub-spread: s' ≤ s, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
and: P ∧ Q, 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
lelt: i ≤ j < k, 
guard: {T}, 
bfalse: ff, 
subtype_rel: A ⊆r B, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
le: A ≤ B, 
subgame: subgame(g;p;n), 
eq_int: (i =z j), 
subtract: n - m, 
nequal: a ≠ b ∈ T , 
isl: isl(x)
Lemmas referenced : 
sub-spread_wf, 
istype-universe, 
Spread_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
int_seg_properties, 
istype-less_than, 
eqff_to_assert, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
subtract_wf, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
decidable__lt, 
int_seg_wf, 
subgame_wf, 
MoveChoice_wf, 
ge_wf, 
istype-false, 
unit_wf2, 
subtract-1-ge-0, 
equal_wf, 
squash_wf, 
true_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
lelt_wf, 
eq_int_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
istype-assert, 
bool_cases, 
assert_of_eq_int, 
iff_transitivity, 
assert_of_bnot, 
neg_assert_of_eq_int, 
subtype_rel_weakening, 
spread-ext, 
add-member-int_seg2, 
btrue_neq_bfalse, 
btrue_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :functionIsType, 
universeEquality, 
Error :dependent_pairFormation_alt, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
because_Cache, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
Error :productIsType, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIsType2, 
baseApply, 
closedConclusion, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :equalityIsType1, 
intWeakElimination, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inlEquality_alt, 
applyLambdaEquality, 
hyp_replacement, 
unionEquality, 
Error :functionExtensionality_alt, 
intEquality, 
Error :equalityIsType4, 
functionEquality, 
productEquality, 
minusEquality, 
Error :inrEquality_alt
Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].    Trans(Spread(Pos;a.Mv[a]);s',s.s'  \mleq{}  s)
Date html generated:
2019_06_20-PM-02_02_51
Last ObjectModification:
2018_10_12-AM-10_42_59
Theory : spread
Home
Index