Nuprl Lemma : concat-lifting-strict

[n:ℕ]. ∀[bags:k:ℕn ⟶ bag(Top)]. ∀[f:Top].  concat-lifting(n;f;bags) {} supposing ∃k:ℕn. ((bags k) {} ∈ bag(Top))


Proof




Definitions occuring in Statement :  concat-lifting: concat-lifting(n;f;bags) empty-bag: {} bag: bag(T) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] top: Top exists: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] concat-lifting: concat-lifting(n;f;bags) concat-lifting-list: concat-lifting-list(n;bags) all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top and: P ∧ Q prop: int_seg: {i..j-} lifting-gen-list-rev: lifting-gen-list-rev(n;bags) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  guard: {T} lelt: i ≤ j < k bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b decidable: Dec(P) le: A ≤ B nequal: a ≠ b ∈  so_lambda: λ2x.t[x] so_apply: x[s] bag-combine: x∈bs.f[x] subtype_rel: A ⊆B less_than': less_than'(a;b) empty-bag: {} bag-map: bag-map(f;bs) bag-union: bag-union(bbs) concat: concat(ll) cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nil: [] less_than: a < b squash: T append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf subtract_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int_seg_properties intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__equal_int equal-empty-bag int_seg_wf lelt_wf decidable__le intformnot_wf int_formula_prop_not_lemma bag_combine_empty_lemma itermSubtract_wf int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma decidable__lt nat_wf int_seg_subtype_nat false_wf bag_union_empty_lemma exists_wf equal-wf-T-base bag_wf top_wf list_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases map_nil_lemma reduce_nil_lemma product_subtype_list spread_cons_lemma set_subtype_base int_subtype_base map_cons_lemma reduce_cons_lemma list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule lambdaFormation extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity applyEquality functionExtensionality dependent_set_memberEquality addEquality baseClosed functionEquality hypothesis_subsumption applyLambdaEquality imageElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(Top)].  \mforall{}[f:Top].
    concat-lifting(n;f;bags)  \msim{}  \{\}  supposing  \mexists{}k:\mBbbN{}n.  ((bags  k)  =  \{\})



Date html generated: 2017_10_01-AM-09_05_03
Last ObjectModification: 2017_07_26-PM-04_45_00

Theory : bags


Home Index