Nuprl Lemma : bag-member-decidable2
∀T:Type. ∀P:T ⟶ ℙ. ∀b:bag(T). ∀x:{x:T| P[x]} .
((∀x,y:{x:T| P[x]} . Dec(x = y ∈ {x:T| P[x]} ))
⇒ (∀x:{x:T| x ↓∈ b} . ∃y:{x:T| P[x]} . (x = y ∈ T))
⇒ Dec(x ↓∈ b))
Proof
Definitions occuring in Statement :
bag-member: x ↓∈ bs
,
bag: bag(T)
,
decidable: Dec(P)
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
prop: ℙ
,
exists: ∃x:A. B[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
guard: {T}
,
pi1: fst(t)
,
uimplies: b supposing a
,
squash: ↓T
,
istype: istype(T)
,
nat: ℕ
,
false: False
,
ge: i ≥ j
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
and: P ∧ Q
,
or: P ∨ Q
,
empty-bag: {}
,
cons: [a / b]
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
colength: colength(L)
,
nil: []
,
it: ⋅
,
so_lambda: λ2x.t[x]
,
sq_type: SQType(T)
,
less_than: a < b
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
decidable: Dec(P)
,
cons-bag: x.b
,
bag-map': bag-map'(f;b)
,
single-bag: {x}
,
bag-append: as + bs
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
bag-map: bag-map(f;bs)
,
true: True
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
sq_or: a ↓∨ b
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
istype-universe,
bag-member_wf,
decidable_wf,
equal_wf,
subtype_rel_self,
bag_wf,
bag-map'_wf,
subtype_rel_bag,
bag_to_squash_list,
bag-subtype,
bag_qinc,
list-subtype-bag,
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
list-cases,
empty-bag_wf,
product_subtype_list,
colength-cons-not-zero,
colength_wf_list,
istype-false,
le_wf,
list_wf,
subtract-1-ge-0,
subtype_base_sq,
intformeq_wf,
int_formula_prop_eq_lemma,
set_subtype_base,
int_subtype_base,
spread_cons_lemma,
decidable__equal_int,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
itermAdd_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
int_term_value_add_lemma,
decidable__le,
cons-bag_wf,
nat_wf,
bag_map_empty_lemma,
cons_wf,
list_ind_cons_lemma,
list_ind_nil_lemma,
bag-map-append,
single-bag_wf,
top_wf,
map_cons_lemma,
map_nil_lemma,
squash_wf,
true_wf,
bag-member-cons,
exists_wf,
subtype_rel_dep_function,
subtype_rel_sets,
subtype_rel-equal,
all_wf,
bag-subtype2,
decidable_functionality,
decidable__bag-member2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
sqequalRule,
functionIsType,
setIsType,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
universeIsType,
productIsType,
inhabitedIsType,
equalityIsType1,
setElimination,
rename,
setEquality,
applyEquality,
instantiate,
universeEquality,
because_Cache,
dependent_pairFormation_alt,
lambdaEquality_alt,
functionExtensionality,
dependent_functionElimination,
dependent_set_memberEquality_alt,
productElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
independent_isectElimination,
imageElimination,
intWeakElimination,
natural_numberEquality,
approximateComputation,
int_eqEquality,
isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
axiomEquality,
functionIsTypeImplies,
unionElimination,
promote_hyp,
hypothesis_subsumption,
applyLambdaEquality,
equalityIsType4,
baseApply,
closedConclusion,
baseClosed,
intEquality,
imageMemberEquality,
inlFormation_alt,
inrFormation_alt,
hyp_replacement
Latex:
\mforall{}T:Type. \mforall{}P:T {}\mrightarrow{} \mBbbP{}. \mforall{}b:bag(T). \mforall{}x:\{x:T| P[x]\} .
((\mforall{}x,y:\{x:T| P[x]\} . Dec(x = y)) {}\mRightarrow{} (\mforall{}x:\{x:T| x \mdownarrow{}\mmember{} b\} . \mexists{}y:\{x:T| P[x]\} . (x = y)) {}\mRightarrow{} Dec(x \mdownarrow{}\mmember{} b))
Date html generated:
2019_10_16-AM-11_30_06
Last ObjectModification:
2018_10_10-PM-07_22_58
Theory : bags_2
Home
Index