Nuprl Lemma : equipollent-nat-union-nsub

k:ℕ+. ℕ ~ ℕ + ℕk


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat_plus: + nat: all: x:A. B[x] union: left right natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) isl: isl(x) subtype_rel: A ⊆B less_than': less_than'(a;b) subtract: m
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int lelt_wf nat_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf subtract_wf nat_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf int_seg_wf biject_wf nat_plus_wf int_seg_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma btrue_wf and_wf isl_wf bfalse_wf btrue_neq_bfalse itermAdd_wf int_term_value_add_lemma int_seg_subtype_nat false_wf add-associates minus-one-mul add-swap minus-one-mul-top add-commutes add-mul-special zero-mul zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis unionElimination equalityElimination sqequalRule productElimination independent_isectElimination because_Cache inrEquality dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination inlEquality natural_numberEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll unionEquality functionExtensionality applyEquality applyLambdaEquality addEquality minusEquality

Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mBbbN{}  \msim{}  \mBbbN{}  +  \mBbbN{}k



Date html generated: 2018_05_21-PM-07_57_36
Last ObjectModification: 2017_07_26-PM-05_35_10

Theory : general


Home Index