Nuprl Lemma : l-ordered-reorder

[A:Type]
  ∀R:A ⟶ A ⟶ 𝔹. ∀L:A List.
    (Trans(A;x,y.↑R[x;y])
     (∀x∈L.(∀y∈L.(¬↑R[x;y])  (↑R[y;x])))
     (∃L':A List. (l-ordered(A;x,y.↑R[x;y];L') ∧ permutation(A;L;L'))))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) permutation: permutation(T;L1;L2) l_all: (∀x∈L.P[x]) list: List trans: Trans(T;x,y.E[x; y]) assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] and: P ∧ Q exists: x:A. B[x] cand: c∧ B true: True iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B guard: {T} or: P ∨ Q uimplies: supposing a uiff: uiff(P;Q) sq_type: SQType(T) assert: b ifthenelse: if then else fi  btrue: tt trans: Trans(T;x,y.E[x; y]) squash: T top: Top
Lemmas referenced :  list_induction trans_wf assert_wf l_all_wf2 l_member_wf not_wf exists_wf list_wf l-ordered_wf permutation_wf nil_wf l-ordered-nil-true permutation-nil-iff true_wf equal-wf-base l_all_iff cons_wf cons_member equal_wf assert_witness all_wf l-ordered-decomp append_wf filter_wf5 bnot_wf bool_wf l-ordered-append l-ordered-filter l-ordered-cons member_filter_2 assert_of_bnot member-permutation and_wf assert_elim subtype_base_sq bool_subtype_base permutation-cons squash_wf iff_weakening_equal length_wf length-append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity applyEquality functionExtensionality because_Cache hypothesis setElimination rename setEquality dependent_functionElimination productEquality independent_functionElimination dependent_pairFormation natural_numberEquality independent_pairFormation addLevel productElimination baseClosed voidEquality voidElimination allFunctionality promote_hyp inrFormation impliesFunctionality independent_isectElimination universeEquality inlFormation unionElimination dependent_set_memberEquality applyLambdaEquality equalityTransitivity equalitySymmetry instantiate imageElimination imageMemberEquality isect_memberEquality

Latex:
\mforall{}[A:Type]
    \mforall{}R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:A  List.
        (Trans(A;x,y.\muparrow{}R[x;y])
        {}\mRightarrow{}  (\mforall{}x\mmember{}L.(\mforall{}y\mmember{}L.(\mneg{}\muparrow{}R[x;y])  {}\mRightarrow{}  (\muparrow{}R[y;x])))
        {}\mRightarrow{}  (\mexists{}L':A  List.  (l-ordered(A;x,y.\muparrow{}R[x;y];L')  \mwedge{}  permutation(A;L;L'))))



Date html generated: 2018_05_21-PM-07_39_58
Last ObjectModification: 2017_07_26-PM-05_14_08

Theory : general


Home Index