Nuprl Lemma : map_is_append

[A,B:Type]. ∀[f:A ⟶ B]. ∀[L:A List]. ∀[L1,L2:B List].
  {(map(f;firstn(||L1||;L)) L1 ∈ (B List)) ∧ (map(f;nth_tl(||L1||;L)) L2 ∈ (B List))} 
  supposing map(f;L) (L1 L2) ∈ (B List)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) length: ||as|| nth_tl: nth_tl(n;as) map: map(f;as) append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] guard: {T} and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] firstn: firstn(n;as) cand: c∧ B map: map(f;as) list_ind: list_ind nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff btrue: tt le: A ≤ B uiff: uiff(P;Q) bool: 𝔹 unit: Unit true: True
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal_wf list_wf map_wf append_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int map_nil_lemma list_ind_nil_lemma nth_tl_nil length_wf nil_wf equal-wf-base-T list_ind_cons_lemma cons_wf null_nil_lemma btrue_wf and_wf null_wf3 subtype_rel_list top_wf null_cons_lemma bfalse_wf btrue_neq_bfalse map_cons_lemma length_of_nil_lemma length_of_cons_lemma first0 reduce_tl_cons_lemma tl_wf lt_int_wf bool_wf assert_wf le_int_wf add-is-int-iff false_wf bnot_wf add-subtract-cancel non_neg_length uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int bnot_of_le_int squash_wf true_wf reduce_hd_cons_lemma hd_wf length_cons_ge_one
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality axiomEquality cumulativity functionExtensionality applyEquality equalityTransitivity equalitySymmetry because_Cache unionElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionEquality universeEquality pointwiseFunctionality baseApply closedConclusion equalityElimination imageMemberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[L:A  List].  \mforall{}[L1,L2:B  List].
    \{(map(f;firstn(||L1||;L))  =  L1)  \mwedge{}  (map(f;nth\_tl(||L1||;L))  =  L2)\}  supposing  map(f;L)  =  (L1  @  L2)



Date html generated: 2018_05_21-PM-07_20_46
Last ObjectModification: 2017_07_26-PM-05_05_09

Theory : general


Home Index