Nuprl Lemma : sym_grp_is_swaps_a

n:{1...}. ∀p:Sym(n).
  ∃abs:{ab:ℕn × ℕn| fst(ab) < snd(ab)}  List. (p (Π map(λab.let a,b ab in txpose_perm(a;b);abs)) ∈ Sym(n))


Proof




Definitions occuring in Statement :  mon_reduce: mon_reduce txpose_perm: txpose_perm sym_grp: Sym(n) perm_igrp: perm_igrp(T) map: map(f;as) list: List int_upper: {i...} int_seg: {i..j-} less_than: a < b pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  lambda: λx.A[x] spread: spread def product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sym_grp: Sym(n) uall: [x:A]. B[x] int_upper: {i...} subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q exists: x:A. B[x] prop: pi1: fst(t) int_seg: {i..j-} pi2: snd(t) so_lambda: λ2x.t[x] igrp: IGroup imon: IMonoid perm_igrp: perm_igrp(T) mk_igrp: mk_igrp(T;op;id;inv) grp_car: |g| perm: Perm(T) so_apply: x[s] top: Top mon_reduce: mon_reduce grp_id: e infix_ap: y grp_op: * gt: i > j guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q istype: istype(T)
Lemmas referenced :  perm_wf int_seg_wf int_upper_wf sym_grp_is_swaps upper_subtype_nat istype-false exists_wf list_wf less_than_wf equal_wf mon_reduce_wf perm_igrp_wf map_wf grp_car_wf txpose_perm_wf subtype_rel_self list_induction map_nil_lemma istype-void reduce_nil_lemma map_cons_lemma reduce_cons_lemma list_subtype_base product_subtype_base set_subtype_base lelt_wf istype-int int_subtype_base le_wf nil_wf id_perm_wf int_seg_properties int_upper_properties decidable__or or_wf equal-wf-base decidable__lt decidable__equal_int full-omega-unsat intformnot_wf intformor_wf intformless_wf itermVar_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_or_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf cons_wf pi1_wf subtype_rel_product pi2_wf comp_perm_wf squash_wf true_wf istype-universe txpose_perm_id iff_weakening_equal perm_ident txpose_perm_sym
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality setElimination rename hypothesisEquality hypothesis applyEquality independent_isectElimination sqequalRule independent_pairFormation productElimination hyp_replacement equalitySymmetry applyLambdaEquality setEquality productEquality because_Cache lambdaEquality_alt inhabitedIsType equalityTransitivity productIsType setIsType independent_functionElimination isect_memberEquality_alt voidElimination equalityIsType4 baseApply closedConclusion baseClosed intEquality dependent_pairFormation_alt unionElimination approximateComputation int_eqEquality dependent_set_memberEquality_alt independent_pairEquality imageElimination universeEquality imageMemberEquality instantiate

Latex:
\mforall{}n:\{1...\}.  \mforall{}p:Sym(n).
    \mexists{}abs:\{ab:\mBbbN{}n  \mtimes{}  \mBbbN{}n|  fst(ab)  <  snd(ab)\}    List.  (p  =  (\mPi{}  map(\mlambda{}ab.let  a,b  =  ab  in  txpose\_perm(a;b);abs))\000C)



Date html generated: 2019_10_16-PM-01_02_01
Last ObjectModification: 2018_10_08-PM-05_41_03

Theory : list_2


Home Index