Nuprl Lemma : oal_lk_merge_2

s:LOSet. ∀g:AbDMon. ∀ps,qs:|oal(s;g)|.
  ((¬(ps 00 ∈ |oal(s;g)|))
   (qs 00 ∈ |oal(s;g)|))
   ((ps ++ qs) 00 ∈ |oal(s;g)|))
   (lk(ps) lk(qs) ∈ |s|)
   ((lv(ps) lv(qs)) e ∈ |g|))
   (lk(ps ++ qs) lk(qs) ∈ |s|))


Proof




Definitions occuring in Statement :  oal_lv: lv(ps) oal_lk: lk(ps) oal_merge: ps ++ qs oal_nil: 00 oalist: oal(a;b) infix_ap: y all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_op: * grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B implies:  Q prop: loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdmonoid: AbDMon dmon: DMon mon: Mon infix_ap: y so_apply: x[s] guard: {T} nil: [] it: oal_nil: 00 squash: T true: True uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q not: ¬A false: False oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set respects-equality: respects-equality(S;T) oal_cons_pr: oal_cons_pr(x;y;ws) oal_lv: lv(ps) top: Top pi2: snd(t) oal_lk: lk(ps) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  oalist_cases_a all_wf set_car_wf oalist_wf not_wf equal_wf oal_nil_wf oal_merge_wf2 oal_lk_wf grp_car_wf infix_ap_wf grp_op_wf oal_lv_wf grp_id_wf abdmonoid_wf loset_wf squash_wf true_wf istype-universe oal_nil_ident_l subtype_rel_self iff_weakening_equal istype-void oal_merge_wf nil_wf subtype-respects-equality list_wf oal_cons_pr_wf oal_nil_ident_r istype-assert before_wf map_wf set_prod_wf dset_of_mon_wf reduce_hd_cons_lemma oal_merge_conses_lemma set_blt_wf eqtt_to_assert assert_of_set_lt eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf set_lt_wf grp_eq_wf assert_of_mon_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt isectElimination hypothesis applyEquality because_Cache functionEquality setElimination rename independent_functionElimination equalityTransitivity equalitySymmetry inhabitedIsType universeIsType imageElimination instantiate universeEquality imageMemberEquality baseClosed natural_numberEquality independent_isectElimination productElimination functionIsType equalityIstype productEquality voidElimination isect_memberEquality_alt unionElimination equalityElimination dependent_pairFormation_alt promote_hyp cumulativity

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}ps,qs:|oal(s;g)|.
    ((\mneg{}(ps  =  00))
    {}\mRightarrow{}  (\mneg{}(qs  =  00))
    {}\mRightarrow{}  (\mneg{}((ps  ++  qs)  =  00))
    {}\mRightarrow{}  (lk(ps)  =  lk(qs))
    {}\mRightarrow{}  (\mneg{}((lv(ps)  *  lv(qs))  =  e))
    {}\mRightarrow{}  (lk(ps  ++  qs)  =  lk(qs)))



Date html generated: 2019_10_16-PM-01_08_10
Last ObjectModification: 2018_11_27-AM-11_32_20

Theory : polynom_2


Home Index