Nuprl Lemma : primed-class-equal

[Info,T:Type]. ∀[X,Y:EClass(T)]. ∀[es:EO+(Info)]. ∀[e:E].
  (Prior(X) es e) (Prior(Y) es e) ∈ bag(T) supposing ∀e':E. ((e' <loc e)  ((X es e') (Y es e') ∈ bag(T)))


Proof




Definitions occuring in Statement :  primed-class: Prior(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf all_wf es-locl_wf bag_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf es-interface-subtype_rel2 top_wf es-first_wf2 bool_wf eqtt_to_assert empty-bag_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot ifthenelse_wf squash_wf true_wf es-pred_wf es-pred-locl es-causl_weakening es-locl_transitivity2 es-le_weakening iff_weakening_equal lt_int_wf bag-size_wf assert_of_lt_int primed-class_wf primed-class-cases

Latex:
\mforall{}[Info,T:Type].  \mforall{}[X,Y:EClass(T)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (Prior(X)  es  e)  =  (Prior(Y)  es  e)  supposing  \mforall{}e':E.  ((e'  <loc  e)  {}\mRightarrow{}  ((X  es  e')  =  (Y  es  e')))



Date html generated: 2015_07_21-PM-03_19_10
Last ObjectModification: 2015_02_04-PM-06_16_54

Home Index