Nuprl Lemma : pred-hd-es-open-interval

[es:EO]. ∀[e1,e2:E].  pred(hd((e1, e2))) e1 ∈ supposing ||(e1, e2)|| > 0


Proof




Definitions occuring in Statement :  es-open-interval: (e, e') es-pred: pred(e) es-E: E event_ordering: EO hd: hd(l) length: ||as|| uimplies: supposing a uall: [x:A]. B[x] gt: i > j natural_number: $n equal: t ∈ T
Lemmas :  member-es-open-interval hd_wf decidable__le false_wf not-ge-2 less-iff-le condition-implies-le minus-add minus-one-mul add-swap add-associates zero-add add-commutes add_functionality_wrt_le add-zero le-add-cancel2 hd_member list_wf es-E_wf list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma gt_wf length_wf es-pred_property assert_elim es-first_wf2 es-locl-first btrue_neq_bfalse assert_wf es-causl_weakening es-open-interval_wf event_ordering_wf member_filter_2 es-before_wf l_member_wf es-bless_wf es-pred_wf member-es-before es-pred-locl es-loc-pred subtype_base_sq bool_subtype_base bool_wf es-causl_transitivity2 assert_of_ff es-causle_weakening_locl es-le_weakening assert-es-bless es-locl_wf select0 es-le_wf es-causl_irreflexivity decidable__equal_int int_subtype_base es-le-self select_wf es-open-interval-ordered int_seg_subtype-nat zero-le-nat length_wf_nat length_cons length_wf_nil non_neg_length length_nil nil_wf cons_wf all_wf subtype_rel_dep_function increasing_wf minus-zero decidable__lt le_antisymmetry_iff int_seg_wf le-add-cancel not-equal-2 not-le-2 neg_assert_of_eq_int assert-bnot bool_cases_sqequal equal_wf eqff_to_assert lelt_wf nequal-le-implies nat_properties le_wf int_upper_subtype_nat assert_of_eq_int eqtt_to_assert eq_int_wf sq_stable__le
\mforall{}[es:EO].  \mforall{}[e1,e2:E].    pred(hd((e1,  e2)))  =  e1  supposing  ||(e1,  e2)||  >  0



Date html generated: 2015_07_17-AM-08_43_48
Last ObjectModification: 2015_07_16-AM-09_51_46

Home Index