Nuprl Lemma : lg-acyclic-well-founded

[T:Type]. ∀g:LabeledGraph(T). (lg-acyclic(g) ⇐⇒ SWellFounded(lg-edge(g;a;b)))


Proof




Definitions occuring in Statement :  lg-acyclic: lg-acyclic(g) lg-edge: lg-edge(g;a;b) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) strongwellfounded: SWellFounded(R[x; y]) int_seg: {i..j-} uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n universe: Type
Lemmas :  lg-size_wf lg-acyclic_wf less_than_wf labeled-graph_wf all_wf subtract_wf strongwellfounded_wf int_seg_wf lg-edge_wf set_wf primrec-wf2 nat_wf decidable__lt lg-acyclic-has-source assert-lg-is-source false_wf int_seg_subtype-nat lg-remove_wf le-add-cancel-alt add_functionality_wrt_le less-iff-le zero-add add-commutes add-swap minus-one-mul minus-minus minus-add add-associates condition-implies-le iff_weakening_equal lg-size-remove true_wf squash_wf lg-acyclic-remove add-zero sq_stable__le not-equal-2 not-le-2 decidable__le neg_assert_of_eq_int assert_of_eq_int eq_int_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert le_wf zero-le-nat lelt_wf le-add-cancel le_antisymmetry_iff assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf less_than_irreflexivity le_weakening less_than_transitivity1 lg-edge-remove le-add-cancel2 int_subtype_base lg-connected_wf zero-mul add-mul-special rel_plus_strongwellfounded

Latex:
\mforall{}[T:Type].  \mforall{}g:LabeledGraph(T).  (lg-acyclic(g)  \mLeftarrow{}{}\mRightarrow{}  SWellFounded(lg-edge(g;a;b)))



Date html generated: 2015_07_22-PM-00_29_43
Last ObjectModification: 2015_07_16-AM-09_39_07

Home Index