Nuprl Lemma : lg-acyclic-well-founded
∀[T:Type]. ∀g:LabeledGraph(T). (lg-acyclic(g) 
⇐⇒ SWellFounded(lg-edge(g;a;b)))
Proof
Definitions occuring in Statement : 
lg-acyclic: lg-acyclic(g)
, 
lg-edge: lg-edge(g;a;b)
, 
lg-size: lg-size(g)
, 
labeled-graph: LabeledGraph(T)
, 
strongwellfounded: SWellFounded(R[x; y])
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
natural_number: $n
, 
universe: Type
Lemmas : 
lg-size_wf, 
lg-acyclic_wf, 
less_than_wf, 
labeled-graph_wf, 
all_wf, 
subtract_wf, 
strongwellfounded_wf, 
int_seg_wf, 
lg-edge_wf, 
set_wf, 
primrec-wf2, 
nat_wf, 
decidable__lt, 
lg-acyclic-has-source, 
assert-lg-is-source, 
false_wf, 
int_seg_subtype-nat, 
lg-remove_wf, 
le-add-cancel-alt, 
add_functionality_wrt_le, 
less-iff-le, 
zero-add, 
add-commutes, 
add-swap, 
minus-one-mul, 
minus-minus, 
minus-add, 
add-associates, 
condition-implies-le, 
iff_weakening_equal, 
lg-size-remove, 
true_wf, 
squash_wf, 
lg-acyclic-remove, 
add-zero, 
sq_stable__le, 
not-equal-2, 
not-le-2, 
decidable__le, 
neg_assert_of_eq_int, 
assert_of_eq_int, 
eq_int_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
le_wf, 
zero-le-nat, 
lelt_wf, 
le-add-cancel, 
le_antisymmetry_iff, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
lg-edge-remove, 
le-add-cancel2, 
int_subtype_base, 
lg-connected_wf, 
zero-mul, 
add-mul-special, 
rel_plus_strongwellfounded
Latex:
\mforall{}[T:Type].  \mforall{}g:LabeledGraph(T).  (lg-acyclic(g)  \mLeftarrow{}{}\mRightarrow{}  SWellFounded(lg-edge(g;a;b)))
Date html generated:
2015_07_22-PM-00_29_43
Last ObjectModification:
2015_07_16-AM-09_39_07
Home
Index