Nuprl Lemma : pRun-System-invariant

[M:Type ─→ Type]
  ∀[Q:ℕ ─→ System(P.M[P]) ─→ ℙ]
    ∀nat2msg:ℕ ─→ pMsg(P.M[P]). ∀loc2msg:Id ─→ pMsg(P.M[P]). ∀S0:System(P.M[P]).
      (Q[0;S0]
       (∀t:ℕ. ∀S:System(P.M[P]).
            (Q[t;S]
             (∀env:pEnvType(P.M[P])
                  let n,m,nm env (t 1) pRun(S0;env;nat2msg;loc2msg) in 
                  Q[t 1;snd(do-chosen-command(nat2msg;loc2msg;t 1;S;n;m;nm))])))
       {∀env:pEnvType(P.M[P]). ∀t:ℕ.  Q[t;snd((pRun(S0;env;nat2msg;loc2msg) t))]}) 
  supposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  pRun: pRun(S0;env;nat2msg;loc2msg) pEnvType: pEnvType(T.M[T]) do-chosen-command: do-chosen-command(nat2msg;loc2msg;t;S;n;m;nm) System: System(P.M[P]) pMsg: pMsg(P.M[P]) Id: Id strong-type-continuous: Continuous+(T.F[T]) nat: spreadn: spread3 uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] so_apply: x[s] pi2: snd(t) all: x:A. B[x] implies:  Q apply: a function: x:A ─→ B[x] add: m natural_number: $n universe: Type
Lemmas :  nat_wf less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__equal_int subtype_rel-int_seg false_wf le_weakening subtract_wf int_seg_properties le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int System_wf subtype_base_sq int_subtype_base iff_weakening_equal eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat nat_properties nequal-le-implies zero-add all_wf int_seg_subtype-nat pRun_wf fulpRunType_wf pMsg_wf unit_wf2 decidable__lt not-equal-2 condition-implies-le minus-add minus-minus minus-one-mul add-swap add-commutes add-associates add_functionality_wrt_le le-add-cancel-alt less-iff-le le-add-cancel lelt_wf set_wf less_than_wf primrec-wf2 decidable__le not-le-2 sq_stable__le add-zero add-mul-special zero-mul pEnvType_wf pRun_wf2 subtype_rel_dep_function top_wf ldag_wf pInTransit_wf subtype_rel_self do-chosen-command_wf Id_wf strong-type-continuous_wf subtract-is-less trivial-int-eq1

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[Q:\mBbbN{}  {}\mrightarrow{}  System(P.M[P])  {}\mrightarrow{}  \mBbbP{}]
        \mforall{}nat2msg:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}loc2msg:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S0:System(P.M[P]).
            (Q[0;S0]
            {}\mRightarrow{}  (\mforall{}t:\mBbbN{}.  \mforall{}S:System(P.M[P]).
                        (Q[t;S]
                        {}\mRightarrow{}  (\mforall{}env:pEnvType(P.M[P])
                                    let  n,m,nm  =  env  (t  +  1)  pRun(S0;env;nat2msg;loc2msg)  in 
                                    Q[t  +  1;snd(do-chosen-command(nat2msg;loc2msg;t  +  1;S;n;m;nm))])))
            {}\mRightarrow{}  \{\mforall{}env:pEnvType(P.M[P]).  \mforall{}t:\mBbbN{}.    Q[t;snd((pRun(S0;env;nat2msg;loc2msg)  t))]\}) 
    supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_10_23
Last ObjectModification: 2015_02_04-PM-04_48_11

Home Index