Nuprl Lemma : not-nullset

[p:FinProbSpace]. ¬nullset(p;λs.True) supposing ¬¬Konig(||p||)


Proof




Definitions occuring in Statement :  Konig: Konig(k) nullset: nullset(p;S) finite-prob-space: FinProbSpace length: ||as|| uimplies: supposing a uall: [x:A]. B[x] not: ¬A true: True lambda: λx.A[x]
Lemmas :  Error :qinv-positive,  Error :qless-int,  qdiv_wf Error :int_nzero-rational,  not-equal-2 decidable__le le_wf false_wf not-le-2 condition-implies-le add-commutes add-associates minus-add zero-add add-swap or_wf nequal_wf Error :qless_wf,  all_wf p-open-member_wf p-measure-le_wf nullset_wf true_wf nat_wf p-outcome_wf not_wf Konig_wf length_wf_nat rationals_wf finite-prob-space_wf eq_int_wf int_seg_wf assert_of_eq_int subtype_rel_dep_function subtype_rel-int_seg subtype_rel_self assert_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf decidable__equal_int natural_number_wf_p-outcome le_weakening int_subtype_base lelt_wf nequal-le-implies exists_wf neg_assert_of_eq_int int-subtype-rationals int-equal-in-rationals length_wf subtype_rel_set expectation-constant equal-wf-T-base int_seg_subtype-nat
\mforall{}[p:FinProbSpace].  \mneg{}nullset(p;\mlambda{}s.True)  supposing  \mneg{}\mneg{}Konig(||p||)



Date html generated: 2015_07_17-AM-08_01_01
Last ObjectModification: 2015_07_16-AM-09_52_13

Home Index