Nuprl Lemma : not-nullset
∀[p:FinProbSpace]. ¬nullset(p;λs.True) supposing ¬¬Konig(||p||)
Proof
Definitions occuring in Statement : 
Konig: Konig(k)
, 
nullset: nullset(p;S)
, 
finite-prob-space: FinProbSpace
, 
length: ||as||
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
true: True
, 
lambda: λx.A[x]
Lemmas : 
Error :qinv-positive, 
Error :qless-int, 
qdiv_wf, 
Error :int_nzero-rational, 
not-equal-2, 
decidable__le, 
le_wf, 
false_wf, 
not-le-2, 
condition-implies-le, 
add-commutes, 
add-associates, 
minus-add, 
zero-add, 
add-swap, 
or_wf, 
nequal_wf, 
Error :qless_wf, 
all_wf, 
p-open-member_wf, 
p-measure-le_wf, 
nullset_wf, 
true_wf, 
nat_wf, 
p-outcome_wf, 
not_wf, 
Konig_wf, 
length_wf_nat, 
rationals_wf, 
finite-prob-space_wf, 
eq_int_wf, 
int_seg_wf, 
assert_of_eq_int, 
subtype_rel_dep_function, 
subtype_rel-int_seg, 
subtype_rel_self, 
assert_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
decidable__equal_int, 
natural_number_wf_p-outcome, 
le_weakening, 
int_subtype_base, 
lelt_wf, 
nequal-le-implies, 
exists_wf, 
neg_assert_of_eq_int, 
int-subtype-rationals, 
int-equal-in-rationals, 
length_wf, 
subtype_rel_set, 
expectation-constant, 
equal-wf-T-base, 
int_seg_subtype-nat
\mforall{}[p:FinProbSpace].  \mneg{}nullset(p;\mlambda{}s.True)  supposing  \mneg{}\mneg{}Konig(||p||)
Date html generated:
2015_07_17-AM-08_01_01
Last ObjectModification:
2015_07_16-AM-09_52_13
Home
Index