Nuprl Lemma : extend-face-map-same

[I:Cname List]. ∀[x,y:Cname]. ∀[i:ℕ2].
  (x:=i)[y:=y] (x:=i) ∈ name-morph([y I];[y I]-[x]) supposing (y x ∈ Cname)) ∧ (y ∈ I))


Proof




Definitions occuring in Statement :  face-map: (x:=i) extend-name-morph: f[z1:=z2] name-morph: name-morph(I;J) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs l_member: (x ∈ l) cons: [a b] nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q not: ¬A implies:  Q false: False prop: all: x:A. B[x] sq_type: SQType(T) rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True squash: T so_apply: x[s] so_lambda: λ2x.t[x] int_upper: {i...} coordinate_name: Cname name-morph: name-morph(I;J) face-map: (x:=i) extend-name-morph: f[z1:=z2] nameset: nameset(L) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bfalse: ff or: P ∨ Q bnot: ¬bb assert: b decidable: Dec(P) cand: c∧ B nequal: a ≠ b ∈ 
Lemmas referenced :  name-morphs-equal cons_wf coordinate_name_wf list-diff_wf cname_deq_wf nil_wf istype-void l_member_wf int_seg_wf list_wf member-list-diff face-map_wf2 extend-name-morph_wf iff_weakening_equal list-diff-cons-single true_wf squash_wf equal_wf int_subtype_base le_wf set_subtype_base list_subtype_base subtype_base_sq name-morph_wf eq_int_wf eqtt_to_assert assert_of_eq_int eq-cname_wf assert-eq-cname int_seg_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base neg_assert_of_eq_int nameset_wf decidable__equal_int istype-le nsub2_subtype_extd-nameset nameset_subtype_extd-nameset not_wf member_singleton cons_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesis hypothesisEquality independent_isectElimination sqequalRule productIsType functionIsType equalityIstype inhabitedIsType universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies natural_numberEquality lambdaFormation dependent_functionElimination independent_functionElimination baseClosed imageMemberEquality because_Cache universeEquality equalitySymmetry equalityTransitivity imageElimination applyEquality lambdaEquality intEquality cumulativity instantiate rename setElimination functionExtensionality lambdaFormation_alt unionElimination equalityElimination applyLambdaEquality approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality voidElimination independent_pairFormation promote_hyp Error :memTop,  dependent_set_memberEquality_alt dependent_set_memberEquality impliesFunctionality addLevel inlFormation

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:Cname].  \mforall{}[i:\mBbbN{}2].    (x:=i)[y:=y]  =  (x:=i)  supposing  (\mneg{}(y  =  x))  \mwedge{}  (\mneg{}(y  \mmember{}  I))



Date html generated: 2020_05_21-AM-10_48_56
Last ObjectModification: 2019_12_10-PM-00_09_02

Theory : cubical!sets


Home Index