Nuprl Lemma : extend-face-map-same
∀[I:Cname List]. ∀[x,y:Cname]. ∀[i:ℕ2].
(x:=i)[y:=y] = (x:=i) ∈ name-morph([y / I];[y / I]-[x]) supposing (¬(y = x ∈ Cname)) ∧ (¬(y ∈ I))
Proof
Definitions occuring in Statement :
face-map: (x:=i)
,
extend-name-morph: f[z1:=z2]
,
name-morph: name-morph(I;J)
,
cname_deq: CnameDeq
,
coordinate_name: Cname
,
list-diff: as-bs
,
l_member: (x ∈ l)
,
cons: [a / b]
,
nil: []
,
list: T List
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
and: P ∧ Q
,
natural_number: $n
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
all: ∀x:A. B[x]
,
sq_type: SQType(T)
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
subtype_rel: A ⊆r B
,
true: True
,
squash: ↓T
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
int_upper: {i...}
,
coordinate_name: Cname
,
name-morph: name-morph(I;J)
,
face-map: (x:=i)
,
extend-name-morph: f[z1:=z2]
,
nameset: nameset(L)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than: a < b
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
bfalse: ff
,
or: P ∨ Q
,
bnot: ¬bb
,
assert: ↑b
,
decidable: Dec(P)
,
cand: A c∧ B
,
nequal: a ≠ b ∈ T
Lemmas referenced :
name-morphs-equal,
cons_wf,
coordinate_name_wf,
list-diff_wf,
cname_deq_wf,
nil_wf,
istype-void,
l_member_wf,
int_seg_wf,
list_wf,
member-list-diff,
face-map_wf2,
extend-name-morph_wf,
iff_weakening_equal,
list-diff-cons-single,
true_wf,
squash_wf,
equal_wf,
int_subtype_base,
le_wf,
set_subtype_base,
list_subtype_base,
subtype_base_sq,
name-morph_wf,
eq_int_wf,
eqtt_to_assert,
assert_of_eq_int,
eq-cname_wf,
assert-eq-cname,
int_seg_properties,
full-omega-unsat,
intformand_wf,
intformeq_wf,
itermVar_wf,
intformnot_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_formula_prop_not_lemma,
int_formula_prop_wf,
eqff_to_assert,
bool_cases_sqequal,
bool_wf,
bool_subtype_base,
assert-bnot,
iff_weakening_uiff,
assert_wf,
equal-wf-T-base,
neg_assert_of_eq_int,
nameset_wf,
decidable__equal_int,
istype-le,
nsub2_subtype_extd-nameset,
nameset_subtype_extd-nameset,
not_wf,
member_singleton,
cons_member
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
extract_by_obid,
isectElimination,
hypothesis,
hypothesisEquality,
independent_isectElimination,
sqequalRule,
productIsType,
functionIsType,
equalityIstype,
inhabitedIsType,
universeIsType,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
natural_numberEquality,
lambdaFormation,
dependent_functionElimination,
independent_functionElimination,
baseClosed,
imageMemberEquality,
because_Cache,
universeEquality,
equalitySymmetry,
equalityTransitivity,
imageElimination,
applyEquality,
lambdaEquality,
intEquality,
cumulativity,
instantiate,
rename,
setElimination,
functionExtensionality,
lambdaFormation_alt,
unionElimination,
equalityElimination,
applyLambdaEquality,
approximateComputation,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
voidElimination,
independent_pairFormation,
promote_hyp,
Error :memTop,
dependent_set_memberEquality_alt,
dependent_set_memberEquality,
impliesFunctionality,
addLevel,
inlFormation
Latex:
\mforall{}[I:Cname List]. \mforall{}[x,y:Cname]. \mforall{}[i:\mBbbN{}2]. (x:=i)[y:=y] = (x:=i) supposing (\mneg{}(y = x)) \mwedge{} (\mneg{}(y \mmember{} I))
Date html generated:
2020_05_21-AM-10_48_56
Last ObjectModification:
2019_12_10-PM-00_09_02
Theory : cubical!sets
Home
Index