Nuprl Lemma : name-morph-extend-comp
∀[I,J,K:Cname List]. ∀[f:name-morph(I;J)]. ∀[g:name-morph(J;K)].  (((f o g))+ = ((f)+ o (g)+) ∈ name-morph(I+;K+))
Proof
Definitions occuring in Statement : 
name-comp: (f o g), 
name-morph-extend: (f)+, 
name-morph: name-morph(I;J), 
add-fresh-cname: I+, 
coordinate_name: Cname, 
list: T List, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
name-morph: name-morph(I;J), 
uimplies: b supposing a, 
name-morph-extend: (f)+, 
name-comp: (f o g), 
compose: f o g, 
has-value: (a)↓, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
eq-cname: eq-cname(x;y), 
uext: uext(g), 
nameset: nameset(L), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
coordinate_name: Cname, 
int_upper: {i...}, 
isname: isname(z), 
true: True, 
assert: ↑b, 
sq_type: SQType(T), 
guard: {T}, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
add-fresh-cname: I+, 
or: P ∨ Q
Lemmas referenced : 
name-morphs-equal, 
add-fresh-cname_wf, 
name-morph-extend_wf, 
name-comp_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
value-type-has-value, 
not_wf, 
l_member_wf, 
set-value-type, 
coordinate_name-value-type, 
fresh-cname_wf, 
nameset_wf, 
eq-cname_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
equal_wf, 
bnot_wf, 
assert_elim, 
btrue_neq_bfalse, 
uiff_transitivity, 
eqtt_to_assert, 
assert-eq-cname, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
set_wf, 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
le_int_wf, 
btrue_wf, 
le_wf, 
true_wf, 
assert_of_le_int, 
iff_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
cons_member, 
nameset_subtype_extd-nameset, 
isname_wf, 
assert-isname, 
set_subtype_base, 
int_subtype_base, 
fresh-cname-not-member, 
extd-nameset_subtype, 
l_subset_right_cons_trivial, 
not-assert-isname, 
nsub2_subtype_extd-nameset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
callbyvalueReduce, 
setEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
levelHypothesis, 
independent_functionElimination, 
voidElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
inlFormation
Latex:
\mforall{}[I,J,K:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[g:name-morph(J;K)].    (((f  o  g))+  =  ((f)+  o  (g)+))
Date html generated:
2017_10_05-AM-10_07_08
Last ObjectModification:
2017_07_28-AM-11_16_32
Theory : cubical!sets
Home
Index