Nuprl Lemma : name-morph-extend-comp
∀[I,J,K:Cname List]. ∀[f:name-morph(I;J)]. ∀[g:name-morph(J;K)].  (((f o g))+ = ((f)+ o (g)+) ∈ name-morph(I+;K+))
Proof
Definitions occuring in Statement : 
name-comp: (f o g)
, 
name-morph-extend: (f)+
, 
name-morph: name-morph(I;J)
, 
add-fresh-cname: I+
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
name-morph: name-morph(I;J)
, 
uimplies: b supposing a
, 
name-morph-extend: (f)+
, 
name-comp: (f o g)
, 
compose: f o g
, 
has-value: (a)↓
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
eq-cname: eq-cname(x;y)
, 
uext: uext(g)
, 
nameset: nameset(L)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
isname: isname(z)
, 
true: True
, 
assert: ↑b
, 
sq_type: SQType(T)
, 
guard: {T}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
add-fresh-cname: I+
, 
or: P ∨ Q
Lemmas referenced : 
name-morphs-equal, 
add-fresh-cname_wf, 
name-morph-extend_wf, 
name-comp_wf, 
name-morph_wf, 
list_wf, 
coordinate_name_wf, 
value-type-has-value, 
not_wf, 
l_member_wf, 
set-value-type, 
coordinate_name-value-type, 
fresh-cname_wf, 
nameset_wf, 
eq-cname_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
equal_wf, 
bnot_wf, 
assert_elim, 
btrue_neq_bfalse, 
uiff_transitivity, 
eqtt_to_assert, 
assert-eq-cname, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
set_wf, 
subtype_base_sq, 
bool_subtype_base, 
iff_imp_equal_bool, 
le_int_wf, 
btrue_wf, 
le_wf, 
true_wf, 
assert_of_le_int, 
iff_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
cons_member, 
nameset_subtype_extd-nameset, 
isname_wf, 
assert-isname, 
set_subtype_base, 
int_subtype_base, 
fresh-cname-not-member, 
extd-nameset_subtype, 
l_subset_right_cons_trivial, 
not-assert-isname, 
nsub2_subtype_extd-nameset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
independent_isectElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
callbyvalueReduce, 
setEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
levelHypothesis, 
independent_functionElimination, 
voidElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
inlFormation
Latex:
\mforall{}[I,J,K:Cname  List].  \mforall{}[f:name-morph(I;J)].  \mforall{}[g:name-morph(J;K)].    (((f  o  g))+  =  ((f)+  o  (g)+))
Date html generated:
2017_10_05-AM-10_07_08
Last ObjectModification:
2017_07_28-AM-11_16_32
Theory : cubical!sets
Home
Index