Nuprl Lemma : hp-angle-sum-lt

e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
  (abc ≅a a'b'c'
   abc xyz ≅ ijk
   a'b'c' x'y'z' ≅ i'j'k'
   jk
   i' j'k'
   yz
   xyz < x'y'z'
   ijk < i'j'k')


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-lt-angle: abc < xyz geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q hp-angle-sum: abc xyz ≅ def exists: x:A. B[x] and: P ∧ Q member: t ∈ T guard: {T} cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] uimplies: supposing a basic-geometry: BasicGeometry geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) prop: false: False select: L[n] cons: [a b] subtract: m geo-out: out(p ab) geo-cong-angle: abc ≅a xyz geo-lt-angle: abc < xyz geo-strict-between: a-b-c basic-geometry-: BasicGeometry- l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True ge: i ≥  append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] oriented-plane: OrientedPlane
Lemmas referenced :  out-preserves-lsep lsep-symmetry lsep-all-sym colinear-lsep geo-strict-between-sep3 euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than geo-cong-angle-preserves-lt-angle2 geo-lt-angle_wf geo-lsep_wf hp-angle-sum_wf geo-cong-angle_wf geo-point_wf geo-out_weakening geo-sep-sym lsep-implies-sep geo-eq_weakening geo-out_inversion out-preserves-angle-cong_1 geo-between-sep geo-between_wf geo-between-trivial geo-cong-angle-symmetry euclidean-plane-axioms geo-between-implies-colinear cong-angle-preserves-lsep_strong geo-cong-angle-symm2 geo-out-interior-point-exists colinear-lsep-cycle geo-out_transitivity geo-strict-between_wf geo-cong-angle-transitivity out-cong-angle geo-out-colinear not-lsep-if-colinear geo-out_wf geo-between-symmetry geo-strict-between-implies-between geo-between-inner-trans geo-between-outer-trans geo-strict-between-sep2 geo-sep_wf hp-angle-sum-eq geo-strict-between-sym geo-strict-between-trans geo-strict-between-trans2 geo-strict-between-sep1 geo-colinear-append cons_wf nil_wf length_wf select_wf nat_properties intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma l_member_wf list_ind_cons_lemma list_ind_nil_lemma lsep-not-between
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination because_Cache hypothesis applyEquality instantiate isectElimination independent_isectElimination sqequalRule isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt universeIsType productIsType inhabitedIsType functionIsType imageMemberEquality baseClosed setElimination rename equalityIstype int_eqEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
    (abc  \mcong{}\msuba{}  a'b'c'
    {}\mRightarrow{}  abc  +  xyz  \mcong{}  ijk
    {}\mRightarrow{}  a'b'c'  +  x'y'z'  \mcong{}  i'j'k'
    {}\mRightarrow{}  i  \#  jk
    {}\mRightarrow{}  i'  \#  j'k'
    {}\mRightarrow{}  x  \#  yz
    {}\mRightarrow{}  xyz  <  x'y'z'
    {}\mRightarrow{}  ijk  <  i'j'k')



Date html generated: 2019_10_16-PM-02_27_37
Last ObjectModification: 2019_09_24-PM-03_01_12

Theory : euclidean!plane!geometry


Home Index