Nuprl Lemma : perp-in-congruence
∀e:EuclideanPlane
  ∀[a,b,A,B,c,d,C,D:Point].
    (ad ≅ AD ∧ bd ≅ BD ∧ cd ≅ CD) supposing (ab  ⊥d dc and AB  ⊥D DC and bc ≅ BC and ac ≅ AC and ab ≅ AB)
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd
, 
euclidean-plane: EuclideanPlane
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
basic-geometry: BasicGeometry
, 
geo-perp-in: ab  ⊥x cd
, 
and: P ∧ Q
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
stable: Stable{P}
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
geo-perp: ab ⊥ cd
, 
cand: A c∧ B
, 
oriented-plane: OrientedPlane
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
basic-geometry-: BasicGeometry-
, 
geo-out: out(p ab)
, 
geo-eq: a ≡ b
, 
geo-strict-between: a-b-c
Lemmas referenced : 
sq_stable__and, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
sq_stable__geo-congruent, 
geo-perp-in_wf, 
geo-lsep_wf, 
geo-point_wf, 
geo-colinear-cong-tri-exists, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
istype-false, 
istype-le, 
istype-less_than, 
stable__and, 
stable__geo-congruent, 
false_wf, 
or_wf, 
exists_wf, 
geo-cong-tri_wf, 
geo-colinear_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
geo-perp-unicity, 
lsep-implies-sep, 
geo-perp-in-symmetry, 
geo-perp-in-iff2, 
lsep-colinear-sep, 
geo-sep_wf, 
geo-colinear-symmetry, 
geo-sep-sym, 
stable__right-angle, 
geo-cong-angle_wf, 
right-angle_wf, 
geo-sas2, 
geo-congruent-iff-length, 
geo-length-flip, 
congruence-preserves-right-angle, 
geo-colinear-same, 
cong-tri-implies-cong-angle, 
geo-colinear-out-cases, 
geo-out_wf, 
geo-between_wf, 
geo-congruent-preserves-out, 
geo-congruent-full-symmetry, 
lsep-all-sym, 
geo-out-trivial, 
out-cong-angle, 
geo-cong-angle-symmetry, 
euclidean-plane-axioms, 
geo-cong-angle-symm2, 
geo-cong-angle-transitivity, 
geo-congruent-preserves-between, 
geo-between-symmetry, 
stable__not, 
geo-between_functionality, 
geo-eq_weakening, 
geo-colinear_functionality, 
geo-cong-angle_functionality, 
geo-congruent_functionality, 
geo-perp-in_functionality, 
geo-lsep_functionality, 
supplementary-angles-preserve-congruence, 
geo-cong-angle-symm3, 
geo-congruent-symmetry, 
geo-congruent-sep, 
right-angle-trivial2, 
geo-congruence-identity, 
right-angle_functionality, 
geo-eq_inversion, 
congruence-preserves-lsep, 
not-lsep-iff-colinear, 
geo-congruent-preserves-colinear, 
geo-perp-trivial-when-colinear, 
geo-perp-in-not-eq, 
geo-colinear-five-segment
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
isect_memberEquality_alt, 
instantiate, 
independent_isectElimination, 
universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
voidElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
productIsType, 
lambdaEquality_alt, 
productEquality, 
inhabitedIsType, 
functionEquality, 
functionIsType, 
unionIsType, 
unionElimination, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
isectIsType, 
promote_hyp
Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,A,B,c,d,C,D:Point].
        (ad  \mcong{}  AD  \mwedge{}  bd  \mcong{}  BD  \mwedge{}  cd  \mcong{}  CD)  supposing 
              (ab    \mbot{}d  dc  and 
              AB    \mbot{}D  DC  and 
              bc  \mcong{}  BC  and 
              ac  \mcong{}  AC  and 
              ab  \mcong{}  AB)
Date html generated:
2019_10_16-PM-01_58_40
Last ObjectModification:
2018_11_07-PM-01_08_04
Theory : euclidean!plane!geometry
Home
Index