Nuprl Lemma : perp-in-congruence

e:EuclideanPlane
  ∀[a,b,A,B,c,d,C,D:Point].
    (ad ≅ AD ∧ bd ≅ BD ∧ cd ≅ CD) supposing (ab  ⊥dc and AB  ⊥DC and bc ≅ BC and ac ≅ AC and ab ≅ AB)


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B guard: {T} prop: implies:  Q euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T basic-geometry: BasicGeometry geo-perp-in: ab  ⊥cd and: P ∧ Q geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b true: True select: L[n] cons: [a b] subtract: m so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] or: P ∨ Q stable: Stable{P} geo-cong-tri: Cong3(abc,a'b'c') geo-perp: ab ⊥ cd cand: c∧ B oriented-plane: OrientedPlane iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) basic-geometry-: BasicGeometry- geo-out: out(p ab) geo-eq: a ≡ b geo-strict-between: a-b-c
Lemmas referenced :  sq_stable__and geo-congruent_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf sq_stable__geo-congruent geo-perp-in_wf geo-lsep_wf geo-point_wf geo-colinear-cong-tri-exists geo-colinear-is-colinear-set length_of_cons_lemma istype-void length_of_nil_lemma istype-false istype-le istype-less_than stable__and stable__geo-congruent false_wf or_wf exists_wf geo-cong-tri_wf geo-colinear_wf not_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle geo-perp-unicity lsep-implies-sep geo-perp-in-symmetry geo-perp-in-iff2 lsep-colinear-sep geo-sep_wf geo-colinear-symmetry geo-sep-sym stable__right-angle geo-cong-angle_wf right-angle_wf geo-sas2 geo-congruent-iff-length geo-length-flip congruence-preserves-right-angle geo-colinear-same cong-tri-implies-cong-angle geo-colinear-out-cases geo-out_wf geo-between_wf geo-congruent-preserves-out geo-congruent-full-symmetry lsep-all-sym geo-out-trivial out-cong-angle geo-cong-angle-symmetry euclidean-plane-axioms geo-cong-angle-symm2 geo-cong-angle-transitivity geo-congruent-preserves-between geo-between-symmetry stable__not geo-between_functionality geo-eq_weakening geo-colinear_functionality geo-cong-angle_functionality geo-congruent_functionality geo-perp-in_functionality geo-lsep_functionality supplementary-angles-preserve-congruence geo-cong-angle-symm3 geo-congruent-symmetry geo-congruent-sep right-angle-trivial2 geo-congruence-identity right-angle_functionality geo-eq_inversion congruence-preserves-lsep not-lsep-iff-colinear geo-congruent-preserves-colinear geo-perp-trivial-when-colinear geo-perp-in-not-eq geo-colinear-five-segment
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis sqequalRule isect_memberEquality_alt instantiate independent_isectElimination universeIsType independent_functionElimination dependent_functionElimination setElimination rename imageMemberEquality baseClosed imageElimination productElimination voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation productIsType lambdaEquality_alt productEquality inhabitedIsType functionEquality functionIsType unionIsType unionElimination dependent_pairFormation_alt equalityTransitivity equalitySymmetry isectIsType promote_hyp

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,A,B,c,d,C,D:Point].
        (ad  \mcong{}  AD  \mwedge{}  bd  \mcong{}  BD  \mwedge{}  cd  \mcong{}  CD)  supposing 
              (ab    \mbot{}d  dc  and 
              AB    \mbot{}D  DC  and 
              bc  \mcong{}  BC  and 
              ac  \mcong{}  AC  and 
              ab  \mcong{}  AB)



Date html generated: 2019_10_16-PM-01_58_40
Last ObjectModification: 2018_11_07-PM-01_08_04

Theory : euclidean!plane!geometry


Home Index