Nuprl Lemma : not-proj-sep
∀n:ℕ. ∀a,b:ℙ^n.  (¬a ≠ b 
⇐⇒ req-vec(n + 1;u(a);u(b)) ∨ req-vec(n + 1;u(a);r(-1)*u(b)))
Proof
Definitions occuring in Statement : 
proj-sep: a ≠ b
, 
punit: u(a)
, 
real-proj: ℙ^n
, 
real-vec-mul: a*X
, 
req-vec: req-vec(n;x;y)
, 
int-to-real: r(n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
real-vec-sep: a ≠ b
, 
real-vec-dist: d(x;y)
, 
real-vec-mul: a*X
, 
real-vec-sub: X - Y
, 
req-vec: req-vec(n;x;y)
, 
subtype_rel: A ⊆r B
, 
real-vec: ℝ^n
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
absval: |i|
, 
true: True
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
nat_plus: ℕ+
, 
stable: Stable{P}
, 
proj-sep: a ≠ b
Lemmas referenced : 
not_wf, 
proj-sep_wf, 
or_wf, 
req-vec_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
punit_wf, 
real-vec-mul_wf, 
int-to-real_wf, 
real-proj_wf, 
nat_wf, 
real-vec-sep-cases, 
int_seg_wf, 
rsub_wf, 
rmul_wf, 
real-vec_wf, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
itermSubtract_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
real-vec-norm_wf, 
real-vec-sub_wf, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
rless_functionality, 
req_weakening, 
real-vec-norm_functionality, 
rabs_wf, 
real-vec-norm-mul, 
rless-int, 
absval_wf, 
sq_stable__less_than, 
real_wf, 
nat_plus_properties, 
rless_wf, 
rmul-int, 
rmul_functionality, 
rabs-int, 
punit-norm1, 
real-vec-dist_wf, 
req_wf, 
stable__req-vec, 
false_wf, 
real-vec-sep_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
real-vec-sep-symmetry, 
not-real-vec-sep-iff-eq, 
real-vec-sep_functionality, 
req-vec_weakening, 
not-real-vec-sep-refl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
sqequalRule, 
because_Cache, 
minusEquality, 
applyEquality, 
productElimination, 
multiplyEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addLevel, 
inlFormation, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbP{}\^{}n.    (\mneg{}a  \mneq{}  b  \mLeftarrow{}{}\mRightarrow{}  req-vec(n  +  1;u(a);u(b))  \mvee{}  req-vec(n  +  1;u(a);r(-1)*u(b)))
Date html generated:
2017_10_05-AM-00_17_47
Last ObjectModification:
2017_07_28-AM-08_55_26
Theory : inner!product!spaces
Home
Index